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a b s t r a c t

To explore the deepest regions of the ocean with high flexibility and environmental adaptability,
deep-sea soft robots have been developed recently. One prominent example is the self-powered
soft robot that successfully operated in the Mariana Trench at a depth of 11,000 meters. Notably,
many functional electronic components such as resistive elements, capacitors, and crystal oscillators
may fail under extreme hydrostatic pressure, posing significant challenges for the practical massive
deployment of deep-sea soft robots. Consequently, designing miniature pressure vessels on the printed
circuit board to protect these vulnerable electronic components is vital for enhancing the reliability of
deep-sea soft robots. However, traditional structure design methods – which often rely on theoretical
analysis, experimental testing and numerical simulations – are often costly and time-consuming,
especially for design problems in high-dimensional design spaces. Herein, we demonstrate a machine-
learning-accelerated design method for devising miniature pressure vessels for vulnerable electronic
components in deep-sea soft robots. Machine learning algorithms including decision trees and neural
network models are employed and compared. The resulting design algorithm can predict whether a
specific design can survive the deep-sea hydrostatic pressure with high accuracy in ∼0.35 ms, roughly
seven orders of magnitude faster than traditional design methods.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Traditional robots are usually made up of rigid structures such
s motors and bearings and have been widely utilized in indus-
rial areas due to their high accuracy, ease of control, and strong
utput force. These rigid components, however, restrict robot
lexibility and environment adaptation [1] and render traditional
obots costly, highly noisy and less secure [2]. Inspired by na-
ure, engineers have designed soft robots composed of compliant
aterials, which offer distinct benefits over traditional robots,

ncluding flexibility, lightweight, high environmental adaptability
nd human-machine safety [3–7]. In particular, underwater soft
obots have garnered much attention in recent years [8–12]. In
pril 2021, a self-powered soft robotic fish that can function in
he Mariana Trench under the extreme hydrostatic pressure of
10 MPa has been reported [13]. The soft robotic fish carries only
atteries and transformers to support its basic function: wing-
lapping actuation. In the future, soft robots are expected to be
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equipped with sensors, cameras, and other advanced electronic
components to perform more complex tasks, such as deep-sea
research and ocean development. However, the extreme hydro-
static pressure in the deep sea might limit the performance of
these electronic components. For example, the resistance of re-
sistive elements will change in the deep sea, because the resistive
elements physically shrink under high hydrostatic pressure. The
high-pressure conditions can also cause certain capacitors to lose
their internal air space, leading to electrode short-circuit. In addi-
tion, electronic components containing internal cavities, such as
crystal oscillators, may collapse and functionally fail under high
hydrostatic pressure [14]. To this end, miniature pressure vessels
on the printed circuit board (PCB) – a hollow structure that
can hold delicate electronic components in its cavity – that can
survive the mechanically demanding environment in the deep sea
need to be designed to protect vulnerable electrical components
in next-generation deep-sea soft robots.

It is worth noting that design problems of hollow structures
are often defined in high-dimensional design space, with design
variables of more than three. Take the spherical shell illustrated
in Fig. 1, which has been widely used as conventional pressure
vessels, as an example. In general, designing such a hollow spher-

ical shell involves five design variables, including inner diameter
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Fig. 1. Traditional design methods and machine-learning-based design methods. A structure design problem often involves multiple design variables. Take a hollow
pherical shell as an example, if the material of the shell is given, the design problem has only 2 variables such that existing design data can be easily visualized
n the Euclidian space as a design map to determine the rationality of a new design. However, if the number of design parameters is larger than three, the design
roblem cannot be displayed graphically. Traditional design methods for such design problems in high-dimensional space rely on analytical approaches, experimental
ests and finite element simulations, which are either inaccessible for complicated cases or time-inefficient. Machine-learning-based design algorithms trained with
ffline simulation/experimental data can significantly accelerate the structure design in high-dimension design space.
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D), thickness (t), elastic modulus (E), Poisson’s ratio (µ) and
ield strength (σs) of the material. If the material of the pressure
essel is given, only two variables (D and t) remain so that the
xisting design data can easily be visualized in Euclidian space
s a design map (see the design map in Fig. 1), which contains
egions representing successful and unsuccessful designs, respec-
ively. Then one can readily determine whether a new design is
uccessful or not by referring to the map thereafter. However,
n practice, the material of the pressure vessels also needs to be
esigned, thereby leading to a design problem with five design
ariables, which can hardly be displayed graphically. Traditional
esign methods for such design problems in high-dimensional
esign space rely on analytical solutions, experimental tests, or
umerical simulations. For complex-shaped structures subjected
o external mechanical loads, analytical solutions are usually in-
ccessible such that the analytical design method is inappropri-
te. The experimental-test-based design method, also termed the
disonian approach, is often carried out in a trial-and-error fash-
on, which is costly and time-inefficient. With the improvement
f computer performance, simulation-based numerical design be-
omes a powerful tool in industrial manufacturing today, which
an drastically reduce the cost of experimentation. However,
or complex 3-D simulation problems, design methods based
n finite element method (FEM) rely on massive computing re-
ources and require substantial prior knowledge of experienced
esigners. Notably, for both experimental and numerical design
ethods, it is essential to perform experimental tests or numer-

cal simulations on every newly proposed design to determine
hether the design is successful, which is time-consuming. To
his end, how to efficiently and accurately design structures in
-dimensional design space (n ≥ 4) remains an open question.
Machine learning (ML), as one of the cutting-edge research

ields in artificial intelligence [15], is the study of how com-
uters can imitate or actualize human learning processes. Ma-
hine learning has not only been applied in knowledge-based
ystems, but also in other fields such as natural language un-
erstanding [16], spam detection [17], computer vision [18] and
2

mage recognition [19]. In the field of mechanics and materi-
ls, machine learning has been widely employed in high en-
ropy alloy development [20,21], structural damage site
rediction [22], nano-mechanics [23,24], empirical formula ver-
fication [25], etc. In addition, researchers use machine learning
o design structures with unprecedented properties [26–29]. For
nstance, Bessa et al. utilized Bayesian classification to design
roper structure to make fragile material super compressible [30].
tt et al. employed an algorithmic-driven method to optimize the
hape of shark-denticle-inspired structures to acquire superior
erodynamic properties [31]. Kim et al. employed deep learn-
ng to accelerate the optimization of the shape of an adhesive
illar [32]. Oh et al. combined machine learning with topology
ptimization to automatically generate a wheel structure that
s aesthetically superior and technically meaningful [33]. Wang
t al. achieved the optimal workspace of magnetic soft contin-
um robots with the help of evolutionary design and genetic
lgorithm, providing an efficient tool to design and optimize the
tructure of magnetic soft actuators [34]. Sun et al. used the
ecurrent neural network model and evolutionary algorithm to
esign 4D-printed active composites. The method is developed
or the forward shape-change prediction of the composite and
olving the inverse problem to find the optimal design [35].
n the design of composite structures, machine learning has
een used to predict the mechanical properties of the compos-
tes and generate designs with enhanced performance [36,37].
he machine-learning method is intrinsically suitable for cap-
uring the relationship among a huge number of variables so
hat it naturally meets the requirement for structure design in
igh-dimensional design space.
In this paper, we use machine learning models – including

ecision trees and neural networks – to build ML-based design
lgorithms for miniature pressure vessels protecting vulnerable
lectronic components in deep-sea soft robots, with training data
rom offline finite element simulations. We first conduct finite
lement simulations to determine the deformation of miniature
ressure vessels under 110 MPa hydrostatic pressure (i.e., the
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ressure at the Mariana Trench, the deepest part of the world’s
cean), from which more than five thousand numerical examples
re studied by varying four design variables. Then the obtained
ata set are used to train and test machine learning models
ncluding decision trees and neural networks implemented in
he open-source package Scikit-learn [38]. The resulting design
lgorithms – namely, the trained and tested decision trees and
eural networks – can assess whether a new design of miniature
ressure vessels can survive the extreme hydrostatic pressure
ith high accuracy in ∼0.35 millisecond, roughly seven orders of
agnitude faster than traditional design methods based on finite
lement simulations. Compared with traditional design methods,
he machine-learning-accelerated design approach presented in
his work is experience-free and time-efficient, and can be easily
eneralized for designing other functional structural components
n high-dimensional design space.

. Model development

.1. Description of the design problem

As shown in Fig. 2a, a hollow pressure vessel structure is
eeded on the PCB to protect vulnerable electronic components
n the soft robotic fish. Considering the fact that most electronic
omponents are thin, flat, rectangular pieces, the miniature pres-
ure vessel is designed as a hollow box rather than a spherical
hell, with the dimensions of the cavity being h (height) × L
length) × 0.8L (width). The pressure vessel and the PCB are
urther encased in a soft matrix, constituting the body of the
oft robotic fish (Fig. 2a). The whole structure is subjected to the
ydrostatic pressure of 110 MPa. Since the size of the body of the
oft robotic fish is fixed, we fix the size of the entire structure.
hen the size of the miniature pressure vessel changes, the size
f the soft matrix alters accordingly. Because the height of most
ulnerable electronic components such as crystal oscillators is
etween 1 mm and 2 mm, we fix the height of the pressure vessel
o be h = 2 mm. The pressure vessel is taken to be bilinear
lastic–plastic material, with Young’s modulus E, yield strength
.001E, and tangent modulus E/140. The soft matrix is consid-
red as incompressible Neo-Hookean material, respectively. To
his end, we take Young’s modulus of the shell (E), the shear
odulus of the soft matrix (G), the length of the cavity (L), and

he shell thickness (t) as four design variables, which leads to
design problem in 4-dimensional design space. A successful
esign should be able to survive the extreme hydrostatic pressure
f 110 MPa.

.2. FEM simulations and data set preparation

In this work, the deformation of the miniature pressure vessel
ubjected to the hydrostatic pressure of 110 MPa is simulated by
he commercial FEM package ABAQUS. Taking advantage of the
ymmetry, only a quarter of the pressure vessel is considered in
he simulation to reduce the numerical cost. The model is meshed
ith tetrahedral elements. We set the criterion for successful
esign as follows: If the vertical displacement at the center point
f the ceiling of the cavity is smaller than 10% of the cavity height
i.e., 0.2 mm), the design is considered successful and labeled ‘‘1’’
Fig. 2b). Otherwise, the design is unsuccessful and labeled ‘‘0’’,
ince the ceiling of the cavity may fall onto the enclosed devices,
amaging the device by transferring the high pressure.
To generate sufficient data set for training machine learning

odels, we explore the parameter space of the four input design
ariables, including the length of the cavity (L), the shell thick-
ess (t), the shear modulus of the soft matrix (G), and Young’s
odulus of the pressure vessel (E). Specifically, we choose ten
3

epresentative values for design variables t , L, and E: t and L
ange from 1 mm to 10 mm at a 1 mm interval and from 2 mm
o 20 mm at a 2 mm interval, respectively; E increases from 50
Pa to 230 MPa with an increment of 20 MPa. Five representative
alues are selected for G, including 100 KPa, 1 MPa, 10 MPa, and
00 MPa for silicone rubbers with different compositions, as well
s 1 GPa for epoxy. In the simulation, the overall size of the entire
tructure is 48 mm (Length)×40 mm (Width)×40 mm (Height).
We utilize python script to explore the above parameter space
and, for each combination of {L, t , G, E}, perform FEM simulations
as described above to determine whether the design is successful
or not. We run 5000 FEM simulations in total on ten computers in
parallel and the entire data acquiring process takes about 5 days.
To this end, a data set of 5000 samples is generated for training
and testing appropriate machine learning models, with the input
and target variables expressed as follows:{Input variables : X = {L, t, E,G}

Target variable : Y = 0 or 1
(1)

2.3. Machine-learning-based design algorithm

As illustrated in Fig. 2c, we use the data set prepared in Sec-
tion 2.2 to train appropriate machine learning models, eventually
obtaining a machine-learning-based design algorithm. The func-
tion of the design algorithm is to predict the value of the target
variable Y based on input variables X = {L, t, E,G}. That is, given
a proposed design of the miniature pressure vessel characterized
by cavity length L, shell thickness t , Young’s modulus of the
shell E, and the shear modulus of the soft matrix G, the design
algorithm can predict whether the design can survive the extreme
pressure of 110 MPa.

Although there exists a myriad of machine learning models,
according to the ‘‘no free lunch’’ theorem, researchers need to
identify the most appropriate model for a particular problem.
During training the design algorithm, we test various machine
learning models, including the logistic regression model, decision
trees, support vector machine, K-nearest neighbors’ model and
neural networks. The accuracy of these machine learning models
for the structural design problem in this work is shown in Ap-
pendix A. By comparison, the decision-tree-based classification
and the neural network model stand out, demonstrating higher
accuracy than do other models.

2.3.1. Decision-tree-based algorithm
Decision tree learning is a supervised learning method used for

classification and regression [39]. Tree models where the target
variable takes a discrete set of values are called classification
trees, which is suitable for this design problem whose target
variable Y equals either 1 (successful design) or 0 (unsuccessful
design). As illustrated in Fig. 3a, a classification tree is built by
partitioning the input parameter space, which constitutes the
root node of the tree, into subsets that are represented by a
series of internal branch nodes, based on a set of classification
rules (Details of the classification rules can be found in the lit-
erature [40,41]). This partitioning process is repeated on each
derived subset recursively, growing the classification tree, until
the subset at a node has all the same values of the target variable.
Such nodes are termed leaf nodes and each leaf node represents
a class label (Y = 1 or Y = 0 in our design problem). For
the design problem of miniature pressure vessels, a given input
X = {L, t, E,G} flows from the root node, through the internal
branch nodes according to the classification rules, and finally into
a leaf node, producing a predicted target variable Y = 0 or 1
according to the label of the leaf node. To build the classification

tree in Scikit-learn, the classification criterion is set to ‘gini’ and
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Fig. 2. Flowchart of the model development. (a) Schematics of the miniature pressure vessel. The miniature pressure vessel (dark gray part in the schematics at the
bottom right corner) is designed to protect fragile electronic components (black part) on the PCB (green part) encased in the soft robotic fish. A box-shaped pressure
vessel is chosen since most electronic components on PCB are thin, flat, and rectangular pieces. Input variables for the design problem include Young’s modulus of
the shell E, the shear modulus of the soft matrix G, the length of the cavity L, and the shell thickness t . (b) Data preparation based on FEM simulations. We perform
FEM simulations to model the deformation of miniature pressure vessels with different design parameters. Based on the simulation result, each design is labeled
either successful (1) or unsuccessful (0), generating a data set of 5000 samples. (c) A ML-based design algorithm can be obtained by training appropriate machine
learning models using prepared data set. The resulting design algorithm can quickly determine whether a proposed design characterized by {L, t, E,G} is successful
or not. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the classification splitter is set to ‘best’. The maximum tree depth
(maximum number of splits from the root node to the leaf node)
is limited to 4 to 8. We do not control the minimum leaf size
(minimum number of samples required for each leaf node) since
the number of features is only four such that overfitting is not an
issue.

2.3.2. Neural-network-based algorithm
Neural networks, a machine learning technology inspired by

biological neural networks in the brain and nervous system, ex-
cel at detecting complex nonlinear relationships among high-
dimensional input and output variables [42], such that they nat-
urally meet the requirement for the design problem in high-
dimensional design space. A wide variety of deep learning models
based on neural networks have been developed, such as convolu-
tional neural networks [43], generative adversarial networks [44].
In this work, the original multilayer perceptron (i.e., a class of
feedforward artificial neural network) is employed, which usually
consists of several layers of nodes, including an input layer, an
output layer, and hidden layers between them, with nodes in
each layer connecting to all nodes in the adjacent layers through
weight and bias (Fig. 3b). As the input layer receives external in-
put data (e.g., X = {L, t, E,G} for the design problem of miniature
pressure vessel), each node in the hidden layers collects inputs
from all nodes in the immediately preceding layer, and sends a
single output by passing the weighted sum of the inputs through
a nonlinear activation function to all nodes in the next layer.
The output layer receives data from the last hidden layer and
eventually produces the ultimate output (Y = 0 or 1 in the
design problem). The complexity of the neural network depends
on the number of hidden layers and neurons in each layer. In this
study, the number of hidden layers is set to 1 or 2, the number
of neurons in the hidden layers ranges from 4 to 12, the input
layer is made up of 4 nodes since the input data X = {L, t, E,G}

contain four variables and the output layer has a single node for
Y = 0 or 1.

3. Results

After training the ML-based design algorithm, we test the
algorithm and evaluate its performance in terms of accuracy and
efficiency. Furthermore, we summarize the mechanical rules for
the design of the miniature pressure vessel in deep-sea soft robots

based on predictions made by the ML-based design algorithm.

4

3.1. Accuracy

The ML-based design algorithm can achieve high prediction
accuracy. For both the decision-tree-based and neural-network-
based design algorithm, we use 80% of the data set prepared
in Section 2.2 as the training data set and the remaining 20%
(i.e., 1000 samples) as the test data set. After testing, the predic-
tions – whether a design is successful or not, i.e., Y = 0 or 1
– made by the ML-based design algorithm are compared to the
target value Y of the test data set, which is calculated by the
FEM simulation (As described in Section 2.2). The accuracy of the
design algorithm is measured by

Accuracy =
n
N

∗ 100% (2)

where n denotes the number of correct predictions and N the
total number of predictions (herein, N = 1000). The accuracy of
the decision-tree-based algorithm and the neural-network-based
algorithm is summarized in Fig. 3c and d, respectively. Fig. 3c
shows that the accuracy of the algorithm prediction improves as
the depth of the decision trees increases, reaching 95.90% with a
tree depth of 8. Fig. 3d shows the neural-network-based design
algorithm can produce a high accuracy of 97.16% with 2 hidden
layers and 21 neurons (4/8/8/1). The results demonstrate that the
ML-based design algorithm can predict the rationality of a specific
design of the miniature pressure vessel characterized by X =

{L, t, E,G} with high accuracy. We also evaluate the sensitivity
of the accuracy to the size of the training data set. As shown
in Fig. B.1 in the appendix, fewer training data lead to similar
but relatively lower accuracy, the overall prediction accuracy is
higher than 92% for data size larger than 1000.

3.2. Efficiency

To demonstrate the efficiency of the ML-based design algo-
rithm, we randomly generated a group of design parameters
Xnew = {L = 7.9 mm, t = 3.9 mm, E = 67 GPa,G =

59.8 MPa} using MATLAB, and feed Xnew into the best performing
ML-based design algorithms obtained in Section 3.1. Note that
this set of parameters is not in the training data set and the
test data set. Since the design problem of the miniature pressure
vessel has four design variables and is difficult to be visualized,
one cannot directly determine whether the design characterized
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t
T

Fig. 3. Design algorithms based on decision trees and neural networks. (a) Schematics representing a decision tree model. As an input X = {L, t, E,G} is fed into
he decision-tree-based design algorithm, it flows from the root node, through the internal branch nodes based on classification rules, and finally into a leaf node.
he value of the target variable (Y = 0 or 1) is given by the label of the leaf node. (b) The architecture of a neural network model. As an input X = {L, t, E,G} is

gathered by the nodes of the input layer of a neural network algorithm, it is successively passed to the nodes in the following hidden layers through an activation
function, until the output layer receives data from the last hidden layer and produce the final output Y = 0 or 1. (c) Decision-tree-based design algorithm with high
prediction accuracy. The tree depth that controls the complexity of the classification trees ranges from 4 to 8. (d) The neural-network-based design algorithm can
achieve high accuracy with simple neural networks. ‘‘ni/n1/no ’’ and ‘‘ni/n1/n2/no ’’ represents neural networks with one and two hidden layers, respectively; ni , n1 ,
n2 , no are numbers of neurons in the input layer, 1st and 2nd hidden layers, and the output layer, respectively.
by Xnew represents a successful design or not based on exist-
ing design experience. The decision-tree-based design algorithm
(tree depth=8) and the neural-network-based design algorithm
(4/8/8/1) can determine that the design is unsuccessful – i.e., the
pressure vessel cannot survive a hydrostatic pressure of 110 MPa
– in only 0.27 ms and 0.35 ms, respectively. FEM simulation ver-
ifies the prediction, but it takes 1.04 h (with 282025 elements).
To this end, we show the high prediction efficiency of the ML-
based design algorithm, which can reduce the time needed to
design the miniature pressure vessel from FEM by seven orders
of magnitude.

3.3. Mechanical rules for the design of miniature pressure vessels

Mechanical rules for the design of miniature pressure vessels
can then be summarized based on prediction results from the
neural-network-based design algorithm (4/8/8/1), which is one of
the best performing algorithms obtained in Section 3.1. In order
to illustrate the prediction results graphically, we fix two out
of the four variables at each time, reducing the design space to
only two dimensions, which are easy to visualize. In this way,
six two-dimensional design maps are generated and presented in
5

Fig. 4, in which the regions of successful and unsuccessful designs
are highlighted in green and red, respectively. Fig. 4a shows the
influence of geometric variables by setting Young’s modulus of
the pressure vessel E = 110GPa and the shear modulus of the
soft matrix G = 0.1MPa. As evident from the plot, increasing
the thickness as well as decreasing the span length of the cavity
is beneficial for limiting the structural deformation within the
allowable range. Fig. 4b and c investigate the effect of Young’s
modulus of the pressure vessel E, demonstrating that the increase
in the elastic modulus enhances the resistance of the structure
to the extreme hydrostatic pressure. Results shown in Fig. 4d–f
indicate that encasing the miniature pressure vessel with a stiff
matrix such as epoxy makes the structure less prone to collapse
under extreme pressure.

4. Discussion

It is worth noting that the ML-based design algorithm is not
only valid for the 4-dimensional design problem of box-shaped
structure discussed above, but can also be extended to design
problems in higher dimensional space and other shapes. For
instance, if we take the Poisson’s ratio µ of the miniature pressure
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Fig. 4. Visualization of the prediction results. Two out of the four design variables are fixed at each time, so that the remaining two variables compose the
two-dimensional design space. Prediction results are displayed graphically in the design space of (a) t vs. L, (b) E vs. L, (c) E vs. t, (d) G vs. t , (e) G vs. L, and (f) G
s. E. The regions of successful and unsuccessful designs are highlighted by green and red, respectively. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
essel as the fifth design parameter, each design is now charac-
erized by five parameters (i.e., L, t , G, E, and µ), thereby giving
5-dimensional design problem. We can explore the parameter
pace of the five input design variables by following the proce-
ure described in Section 2.2 (e.g., select 10 discretized values
or parameters L, t , and E, and 5 discretized values for G and µ),
nd then conduct finite element simulations, getting a data set
onsisting of 25,000 samples. Machine learning models can then
e trained/tested with the data set and used to guide the design
f miniature pressure vessels in 5-dimensional design space. In
eneral, since machine learning methods such as neural networks
an recognize complex relationships between high-dimensional
nputs and outputs, the ML-based method reported in this work
s applicable to design problems in any n-dimensional space (n =

, 2, . . .). Moreover, for structural design of other shapes, one just
eeds to identify the n number of parameters that characterize
he structural design, obtaining a n-dimensional design problem,
hich can be solved by the ML-based design method.

. Conclusion

In summary, using machine learning models including deci-
ion trees and neural networks, we built two ML-based design
lgorithms for the four-dimensional design problem of miniature
ressure vessels in deep-sea soft robots, of which the function
s to determine whether a proposed design with four design
ariables is successful or not. It is worth noting that the best per-
orming ML-based design algorithm can accelerate the design of
iniature pressure vessels with high accuracy and high efficiency,
rastically reducing the time needed to design the structure by
6

seven orders of magnitude compared to the traditional FEM-
based design method. Notably, if trained by appropriate data set,
the ML-accelerated design approach presented in this work can
be extended to higher dimensional design space and other shapes
for practical applications.
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Appendix A. The accuracy of various machine learning models

For the structural design problem in this work, we test the
prediction accuracy of different machine learning models. We run
five tests on each model and average the results. All tests are
carried out on Scikit-Learn, key model parameters are listed in
Table A.1, and default parameters are chosen for the remaining
parameters.

As shown in the table, logistic regression, supporting vector
machines (SVM), and K-nearest neighbors (KNN) demonstrate
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Table A.1
The accuracy of various machine learning models.
Fig. B.1. The sensitivity of the accuracy to the training set size.

ccuracy up to 92.4%, 94.6%, and 95.4%, respectively. While the
ccuracy of decision trees and Neural Networks can be as high
s 97.1% when the depth of the decision tree model is 10 and
hen the structure of the neural network is 4/8/8/1, exceeding
hat of the logistic regression, SVM and KNN model. To this end,
e utilize the decision trees and neural network models in this
ork to achieve high design accuracy.

ppendix B. The sensitivity of the accuracy to the training set
ize

For this design problem, we tested the sensitivity of the accu-
acy to the training set size. We take 1000 data points for testing.
he training set was randomly selected from the remaining 4000
amples and the size of the training set is increased from 1000
o 4000 at a 500 interval. For each training set size, five tests are
onducted and the accuracy is evaluated by averaging the results
rom the 5 tests. As shown in Fig. B.1, fewer training data lead
o similar but relatively lower accuracy, the overall prediction
ccuracy is higher than 92% for data size larger than 1000.
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