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a b s t r a c t

Torsion applied to a slender soft rod can cause the rod to lose its stability and knot — a phenomenon
widely referred to as the torsional instability of elastic rods. Previous studies mainly focus on predicting
the critical load, at which the torsional instability occurs, and investigating the post-instability
deformation of the rod. Thus far, little attention, if any, has been paid to exploiting the torsional
instability of hyperelastic soft rods to realize functions such as actuation. In this work, we study the
twisting process of hyperelastic soft rods through dimensional analysis and explicit finite element
method, and find that the axial pulling force of the soft rod suddenly rises drastically immediately
after the torsional instability occurs. Further simulations demonstrate that the sharply increased pulling
force can be utilized to achieve a large-stroke pulling actuation. The influence of the rod geometry and
material properties of the rod on the actuation forces/strains is also discussed. The results of this work
are expected to guide the design of novel actuators based on the torsional instability of hyperelastic
soft rods.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Soft robotics has been widely exploited in a variety of fields
rom industrial manufacturing to healthcare owing to their ex-
ellent flexibility and compliance, which has propelled them to
e a thriving technology nowadays [1–4]. Soft actuators are the
ain and indispensable component of soft robotics, which can

ealize a wide range of actions and motions, enabling soft robots
o interact with external environments and complete complicated
asks [5–10]. Therefore, designing soft actuators with reliable
unctions plays a crucial role in the development of soft robotic
ystems. Most soft actuators work by responding to external
hysical or chemical stimuli [11]. For example, soft actuator sys-
ems based on liquid crystal elastomers can achieve different
hape morphing modes when triggered by light [12]. Thread-
ike magnetic robots, which have omnidirectional steering and
avigation capabilities, can produce large elastic deflection under
he remote control of external magnetic fields [13–15]. Neverthe-
ess, these actuators rely on external physical or chemical stimuli,
aking them difficult to work in complex unstructured envi-

onments. For instance, a light-driven actuator can only operate
n unobstructed environments [16]. Furthermore, the range of
ctuation forces that can be accessed by soft actuators is relatively
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narrow since they do not use rigid mechanisms such as hinges,
gears, or shafts to transmit and amplify forces [17]. In addition,
the actuation response of many hydrogel-based actuators de-
pends on the slow diffusion of water in the hydrogel, thereby
resulting in low actuating speeds [18,19].

Mechanical instabilities are widely recognized as an adverse
effect and often avoided in engineering design since they are
generally regarded as mechanical failures. However, it is worth
noting that the onset of mechanical instability is often accom-
panied by sudden and significant changes in geometry or force,
which can be used to achieve fast and large actuation [20–23]. To
this end, actuators utilizing mechanical instabilities as the actu-
ating principle have been proposed in recent years to address the
challenges faced by traditional soft actuators [24]. For instance,
by exploiting the buckling of flexible beams, soft robots can gen-
erate rapid and large deformation and achieve complex motions
using low input energy [17]. Soft fluidic actuators can use small
amounts of fluid to generate dramatic changes in shape, volume,
and output force via snap-through instability [23]. Moreover, me-
chanically programmable hydrogel assembly systems can achieve
abrupt shape transformations in a reversible manner by per-
forming instability-based transitions between mechanically bi-
stable states [18]. That is, soft actuators that harness mechanical
instabilities to realize actuation function can produce large defor-
mation and considerable actuation force at high speed. However,
most reported instability-enabled actuators are mainly based on

well-known instability modes such as buckling and snap-through
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nstability, whereas the success of employing less-studied insta-
ilities – such as the torsional instability of soft rods – in actuator
esign remains rather limited.
The torsion of elastic rods has been observed at various length

cales, from anchor cables at the macroscale [25], and skeletal
uscles at the micro-scale [26], to DNA double helix at the nano-
cale [27]. When cylindrical rods are subjected to sufficiently
arge torsions, they may lose stability, suddenly deforming into
localized helix pattern, followed by knot formation as the rod

s twisted further [28–31]. The phenomenon is known as the
orsional instability of elastic rods. Previous research on tor-
ional instability mainly focuses on the theoretical analysis of the
ritical load that induces the instability, while how to exploit
he torsional instability receives little attention. In this work,
y combining dimensional analysis and explicit finite element
ethod, we systematically investigate the twisting process of
yperelastic soft rods – including the pre-instability deformation
tage, the onset of torsional instability, and the post-instability
tage – and study the mechanical response of the twisted rods
uring the entire process. The results show that the axial force
f the soft rod increases suddenly and significantly upon the
nset of the torsional instability. More importantly, we demon-
trate that large-stroke pulling actuation can be achieved by
xploiting the sharp increase in axial force that accompanies
he torsional instability. This work brings a new member to the
nstability-enabled actuator family, i.e., pulling actuators based on
he torsional instability of hyperelastic rods.

. Numerical simulations of the torsion process of hyperelas-
ic soft rods

We employ the commercial finite element package, ABAQUS,
o conduct a three-dimensional simulation of the torsion pro-
ess of hyperelastic soft rods. Dynamic/Explicit solver is chosen
o solve the large deformation of the hyperelastic rod during
wisting, because it can circumvent the convergence issue due
o self-contact behavior of the twisted rod at the post-instability
tage. The model of the rod is meshed with explicit, linear, three-
imensional eight-node brick elements (C3D8R), with the number
f elements being around 10000–15000. Reduced integration and
nhanced hourglass control are adopted to enable the elements to
ave an enhanced tolerance of distortion. The self-contact module
n ABAQUS is utilized to model the self-contact behavior of the
od, with the normal contact behavior set as hard contact and the
angential behavior characterized by a friction coefficient of 0.06.
e create two reference points and constrain the motion of the

wo end surfaces of the rod to the motion of the two reference
oints, respectively, using coupling constraint of kinematic type,
o that torsion can be applied to the rod by setting opposite
ngular velocity of π rad/s at each reference point, which causes
he rod to make one full turn per second. At such rotational speed,
he kinetic energy of the rod remains less than 5% of the total
nternal energy throughout the simulation, so the torsion can
e considered quasi-static. Meanwhile, the translational displace-
ent of the two reference points is restricted in all directions

o simulate the situation where the end-to-end distance of the
od does not change. The mechanical behavior of the rod is char-
cterized by the Arruda–Boyce model whose model parameters
nclude the shear modulus µ, the limiting network stretch λ, and
parameter D which is related to the initial bulk modulus K0
y K0 =

2
D [32]. In this work, we take µ = 20 MPa, λ = 1,

and D = 1 × 10−6 MPa−1, unless otherwise noted, to simulate
an almost inextensible and incompressible rod. The density of
the rod is set to 965 kg/m3. The mass scaling factor is taken to
be 10−6 to balance the computation speed and the simulation
accuracy.
2

To reveal the characteristics of the torsional instability of a
hyperelastic soft rod, we first simulate the deformation of a rod
under torsion with a radius of 2 mm and a length of 100 mm as
a representative case. Fig. 1 summarizes the simulation results of
the resultant torque and axial force of the rod during rod twisting,
as well as the corresponding deformed configurations of the rod.
The simulated deformation of the hyperelastic rod under torsion
is shown in Fig. 1a. The rod is initially straight and not twisted
(Snapshot I). As the twisting progresses, the rod gradually bends
after two turns of twist and deforms from its trivial undeflected
configuration (Snapshot II) into a continuous helix form (Snap-
shots III and IV). Thereafter, further twisting causes the rod to
lose its stability in the eighth turn, resulting in a transition to a
localized helical pattern (Snapshot V), as described by Coyne [30].
The formation of the local helix shown in the snapshot V of Fig. 1a
marks the onset of the torsional instability. With further increase
in torsion, a localized knot forms and the rod is in the self-contact
mode (Snapshot VI). The sequential configurational changes of
the twisted rod obtained by the simulation is consistent with
the experimental observation made by Thompson and Champney
[28].

During the simulation, the resultant torque and axial force of
the rod can be monitored on the reference points. Note that the
torque and axial force extracted from the reference points on
both sides of the rod are almost the same, with slight disparity
that can be attributed to the small angular acceleration of the
rod, which indicates that the torsion process simulated by the
dynamic/explicit solver is indeed quasi-static. To this end, in
Fig. 1b we plot the resultant torque and axial force obtained
at one reference point as a function of the number of twist
turns. The data points on the curves, which are marked by Ro-
man numerals, are corresponding to the configurations shown
in Fig. 1a. With the number of twist turns increases, the torque
ramps up almost linearly prior to the onset of the torsional
instability, followed by a slight drop after the rod loses stability,
and eventually rises again after the knotting formation of the rod
(Fig. 1b). The reduction in resultant torque can be understood
as follows: before the torsional instability sets in, the rod is in
the form of a continuous helix (Snapshot IV), and thus twists
almost uniformly along the rod; after the rod loses its stability,
the torsional deformation becomes concentrated at the localized
helix (Snapshot V), with the remaining part of the rod untwisting
slightly, thereby resulting in the drop in torque.

As shown in Fig. 1b, the evolution of the axial force exhibits
a nonlinear trend. At the beginning of the twisting process, the
rod is nearly straight and trivially deflected (Snapshot II). Com-
pared to its undeformed configuration, the contour length of the
rod increases slightly due to the incompressibility of the rod —
during torsion, the rod needs to reduce its radius but increase
the contour length to satisfy the requirement of volume conser-
vation [33]. One notes that the end-to-end length of the rod is
fixed, thus the rod is in longitudinal compression during the first
two twist turns, which manifests as a compressive axial force, as
shown in Fig. 1b. Subsequent twisting bends the rod into a three-
dimensional highly-deflected helix configuration (Snapshot III),
which tends to reduce the end-to-end length of the rod, thereby
giving rise to a tensile axial force of the rod since the end-to-
end shortening is prohibited by boundary conditions. Thereafter,
the axial force increases gently with increasing twist turns (from
Snapshot III to Snapshot V). Intriguingly, after the torsional in-
stability sets in, the formation of the localized helix and knot
(Snapshot VI) during the eighth twist turn abruptly straightens
the rest part of the rod, and causes a rapid and significant increase
of the tensile axial force, with the tensile axial force increasing
by a factor of 2.8 in the eighth turn, which constitutes a salient

feature of torsional instability. Finally, after the knot formation of
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Fig. 1. Simulation results of a representative hyperelastic rod with a radius of 2 mm and a length of 100 mm under torsion. (a) Sequential deformed configurations
of the rod during the torsion process. The formation of the localized helix (snapshot V) marks the occurrence of the torsional instability. The color contour represents
the maximum principal strain. (b) The resultant torque and axial force plotted as a function of the number of twist turns. The twist turn in which the torsional
instability takes place is highlighted by pink. Notably, the occurrence of torsional instability is accompanied by a sharp increase of the axial force as well as a slight
drop in the torque.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the rod, the axial force still keeps rising, but at a much slower rate
relative to the increase immediately after the torsional instability
begins. The sudden and drastic increase in axial force provides
the opportunity to harness the torsional instability of hyperelastic
rod to achieve large-stroke pulling actuation. Details on the use of
torsional instability to realize pulling actuation will be discussed
in later sections.

3. The influence of rod geometry on the mechanical response
of twisted hyperelastic rods

In the previous section, the torsion process of a representative
hyperelastic rod has been studied. The simulation results suggest
that the sharp force increase induced by the torsional instability
can be potentially used to achieve pulling actuation. However,
the effect of the rod geometry on the mechanical response of the
twisted rod remains elusive. In this regard, further simulations
on rods of different sizes are subsequently carried out to find the
general law governing the torsion process of hyperelastic rods.
Dimensional consideration gives the expressions of axial force F
nd torque T of the rod taking the form

= f
(
R
L
,N, λ

)
µR2, (1)

T = t
(
R
L
,N, λ

)
µR3, (2)

where µ and λ are the model parameters of the Arruda–Boyce
model, being the shear modulus and the limiting network stretch
of the rod material, respectively. R and L denote the radius and
3

length of the rod, N is the number of twist turns. f
( R
L ,N, λ

)
=

F/µR2 and t
( R
L ,N, λ

)
= T/µR3 are dimensionless functions

epresenting the normalized axial force and normalized torque,
espectively, and they depend on three dimensionless parame-
ers, R

L , N , and λ. To systematically investigate the size effect on
he mechanical response of hyperelastic soft rods under torsion
nd verify Eqs. (1) and (2), three groups of rods with different
adius-to-length ratio R/L are simulated and rods in each group
ossess the same radius-to-length ratio but different radii and
engths (Table 1).

Fig. 2 plots the normalized axial force F/µR2 and normal-
zed torque T/µR3 versus the number of the twist turns N . As
redicted by Eqs. (1) and (2), it can be observed that for rods
f the same radius-to-length ratio R/L, the F/µR2 – N curves
lmost overlap, and so do the T/µR3 – N curves. The small dif-
erences that manifest as the curve fluctuations can be attributed
o numerical errors corresponding to the dynamic effects, due to
he dynamic/explicit solver employed in this work. Fig. 2 also
hows that rods with larger radius-to-length ratio R/L exhibit
igher normalized torque and normalized axial force for the same
umber of twist turns N , and requires fewer twist turns to trigger
orsional instability — the rod with R/L = 1/50, 1/100, 1/150
oses stability in the 8th, 13th, and 16th twist turn, respectively.
ore importantly, after the torsional instability sets in, the axial
ulling force of the rod rises sharply until a localized knot is
ormed on the rod. The axial force that corresponds to the mo-
ent of knot formation on the rods can be defined as the limiting
ulling force, which can be used to assess the actuation capability
f the rod. In this regard, we find that rods with larger radius-
o-length ratio R/L possess higher pulling capability. Specifically,
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Fig. 2. Mechanical response of hyperelastic rods of different sizes under torsion. (a) The normalized resultant torque of rods under torsion. (b) The normalized axial
force of rods under torsion. The curves with the same radius-to-length ratio almost overlap, and the small disparity manifesting as the curve fluctuations can be
attributed to numerical errors due to the dynamic/explicit solver.
Table 1
Dimensions of hyperelastic rods simulated.

R/L R (mm) L (mm)

Group 1 1/50
1 50
2 100
4 200

Group 2 1/100
1 100
2 200
4 400

Group 3 1/150
1 150
2 300
4 600

the limiting pulling force is 2.58, 1.37, and 0.98 for radius-to-
length ratios of 1/50, 1/100, 1/150, respectively. That is, for
yperelastic rods with the same radius, the shorter the rod, the
igher the pulling capability. This provides quantitative guidance
or designing the pulling actuators based on torsional instability
f hyperelastic rods.

. Pulling actuators based on the torsional instability of hy-
erelastic rods

Due to the sharp increase of the axial force associated with
he formation of the localized helix and knot, torsional instability
an be exploited to achieve pulling actuation. As shown in Fig. 3a,
ne practical pulling actuator based on this idea is comprised of
hyperelastic soft rod, a stepper motor connected to one end of
he soft rod, and a slider that is attached to the other end of the
od whose rotation is inhibited by the track-roller system. When
he torque applied by the stepper motor triggers the torsional
nstability of the rod, that actuator works by displacing the object
onnected to the slider by virtue of the large axial force of the
wisted rod, not relying on any external physical or chemical
timuli. The practical design shown in Fig. 3a can be used to ex-
erimentally explore the applications of pulling actuators based
n torsional instability of soft rods. However, this work focus on
emonstrating the working principle of the pulling actuators by
umerical simulation. Thus a simplified model of this actuator is
uilt in ABAQUS as shown in Fig. 3b–d: we simulate a hyperelastic
od with a block of dead weight G attached to the bottom end of
he rod. The unattached top end of the rod is fixed and can only
otate along the longitudinal axis of the rod; the rotation of the
ead weight is prohibited. The same material properties used in
revious simulations are adopted here. Three actuators with the
ame radius but different lengths are investigated, whose radius-

o-length ratio is R/L = 1/150 (Fig. 3b), 1/100 (Fig. 3c), and 1/50

4

(Fig. 3d), respectively. The dead weight G is set to G/µR2
= 1.25

(Fig. 2b) to test the performance of the pulling actuators. Initially,
the block of dead weight is placed on the ground and the rod
is straight and unstretched. An angular velocity of 2π rad/s is
applied to the top end of the rod.

Assume the torsional instability of a hyperelastic rod occurs
in the Nth twist turn. The initial configuration and the deformed
configurations at the beginning and the end of the Nth turn
are shown in Fig. 3 to demonstrate the function of the pulling
actuators. For a rod with an R/L ratio of 1/150, the torsional
instability occurs in the 16th turn and the axial force of the rod
increases rapidly as shown in Fig. 2b, however, the axial force
upon knot formation is not large enough to pull the dead weight
off the ground, since the dead weight of G/µR2

= 1.25 exceeds
the limiting pulling force of the rod, which is about F/µR2

= 0.98
as shown in Fig. 2b. Therefore, the mass is still on the ground at
the end of the 16th turn (Fig. 3b). For a rod with an R/L ratio
of 1/100, the torsional instability takes place in the 13th turn. In
this case, the limiting pulling force of the rod F/µR2

= 1.37 is
slightly higher than the dead weight of G/µR2

= 1.25 (Fig. 2b),
thus the block is lifted off the ground at the end of the 13th
turn (Fig. 3c). In addition, for a relatively shorter rod with an
R/L ratio of 1/50, as the rod loses its stability, a large portion
of the rod snarls, accompanied by a rapid increase of axial force
rising to F/µR2

= 2.58 (Fig. 2b), way beyond the level of the
dead weight G/µR2

= 1.25, such that the block is lifted away
from the ground by a large distance compared to the original
length of the rod (Fig. 3d). That is, rods with reasonably higher
R/L ratio can successfully lift the mass, realizing pulling actuation,
which confirms the feasibility of exploiting torsional instability of
hyperelastic rods to design pulling actuators.

To further quantify the performance of the pulling actuators,
given a dead weight G/µR2, we can define a concept of actuation
strain εa as

εa = H/L, (3)

where H represents the height that the mass is pulled off the
ground at the end of the Nth turn in which torsional instability
occurs, and L is the initial length of the rod as mentioned above.
Fig. 3e summarizes the actuation strains of the rods with radius-
to-length ratio of R/L = 1/50, 1/100, and 1/150, respectively.
The actuation strain increases from 0 for R/L = 1/150, to 0.347
for R/L = 1/100, and to 0.822 for R/L = 1/50, further confirm-
ing that rods with higher R/L value exhibiting better actuating
performance. Moreover, the rod with R/L = 1/50 shows an
actuation strain of 0.822, which indicates that the actuator based
on torsional instability can achieve large-stroke pulling actuation.
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Fig. 3. Pulling actuation enabled by harnessing the torsional instability. (a) One practical design of pulling actuators based on the torsional instability of soft rods. The
simplified simulation model of pulling actuators with (b) R/L = 1/150, (c) R/L = 1/100, and (d) R/L = 1/50. It is shown that rods with reasonably large R/L values
can successfully lift the load hanging below. (e) The actuation strain of rods with R/L = 1/150, R/L = 1/100, and R/L = 1/50, given a dead weight of G/µR2

= 1.25.
Fig. 4. Effect of the stretchability of the rod on the actuating performance. (a) Performance of the rod with λ = 1, λ = 1.2, λ = 1.4, and λ = 1.6. The deformed
onfigurations of the rod at the beginning and the end of the twist turns in which torsional instability occurs are shown in the figure. (b) Actuation strains of the
our rods given the dead weight G/µR2

= 1.25.
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Previous simulations have shown that the rod sizes (i.e., the
adius-to-length ratio) are critical for the design of the pulling
ctuator. However, the effect of material properties of the rod,
uch as stretchability, on the performance of the pulling actuators
as not been studied. As a parameter that measures the limiting
etwork stretch of the rod, λ may have a great influence on the
orsional instability as well as the actuation performance, but is
et to 1 in all previous simulations. To understand the influence
f the limiting network stretch λ, we simulate four rods with
= 1, 1.2, 1.4 and 1.6, respectively. The radius-to-length ratio

s R/L = 1/50 and the dead weight is set to G/µR2
= 1.25. As

hown in Fig. 4a, the rod with λ = 1 and 1.2 can successfully lift
he mass, but with the slight increase of λ, the actuation strains
rop significantly from εa = 0.822 for λ = 1 to εa = 0.178 for
= 1.2. (Fig. 4b). The reason can be understood as follows: a rod
ith small λ quickly stiffens when being stretched, thus it pulls
p the mass hanging below upon the onset of torsional instability
5

ather than being stretched by the mass. In the contrary, the
ods with λ = 1.4 and 1.6 stiffen much more slowly than rods
ith smaller λ values. As a result, the rods remain soft and can
e stretched easily by the dead weight after torsional instability
akes place, therefore, the rod with λ = 1.4 can only lift the
ass just off the ground, with a trivial actuation strain being
.002, and the rod with λ = 1.6 fails to achieve pulling actuation
Fig. 4a). That is, a rod with lower stretchability exhibits enhanced
ctuation performance. To this end, the materials such as natural
ubber [28], fluoroelastomer rubber, ethylene propylene diene
ubber, and nitrile butadiene rubber [33] – they possess limited
tretchability and harden quickly upon stretching – can be used
o design torsional-instability-based pulling actuators, enabling
great number of potential applications. For example, the soft

ods made of these materials can be used in soft robots as artifi-
ial muscles, utilizing the actuation force generated by torsional
nstability to drive the robotic arm to achieve desired motions.
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. Summary

In conclusion, by resorting to finite element simulation with
ynamic/explicit solver in ABAQUS, we propose a soft pulling
ctuator based on the torsional instability of slender hyperelastic
od, by harnessing the sharp increase in axial force when the rod
oses stability under torsion. Compared to existing soft actuators
hat rely on external physical and chemical stimuli such as light,
agnetic field and, pH values, the pulling actuator presented

n this work can function in response to mechanical torsion, a
echanical stimulus that can be simply applied even in unstruc-

ured environment. The pulling actuator can achieve large-stroke
ulling actuation with a considerable actuation strain beyond 80%
n some specific cases. The actuating force and strain can be
djusted by tuning the dimensions and material properties of the
od. This work paves the way for designing new soft actuators
hat harness the instability of soft materials.
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