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a b s t r a c t 

The stretchability of metal materials is often limited by the onset and development of 

necking instability. For instance, necking of lithium metal often occurs at low strains and 

thus hinders its practical applications in stretchable lithium batteries. Substrate/metal bi- 

layers are emerging as a promising solution to the stringent stretchability requirement of 

metal electrodes and current collectors in flexible and stretchable batteries. So far, a com- 

prehensive understanding of the bifurcation instability of substrate-supported metal layers 

under arbitrary biaxial in-plane tensile loading still remains elusive. Most existing theo- 

retical and numerical studies of the bifurcation instability of substrate-supported metal 

layers assume either plane strain condition or single-necking mode (i.e., a single diffusive 

neck occurs). However, in conducted experiments, substrate/metal bilayers are subjected 

to uniaxial tensile loading and formation of multiple necks is observed during the tests. 

This paper presents an all-wavelength bifurcation analysis to understand the deformation 

instability of substrate/metal bilayers under arbitrary biaxial tensile loadings, from equi- 

biaxial tension, to plane-strain tension, and to uniaxial tension. Two representative bilayer 

structures are investigated, namely, a metal layer supported by a plastic substrate and a 

metal layer supported by an elastomer substrate. The analysis predicts three bifurcation 

modes of substrate/metal bilayers, including single-necking mode, multiple-necking mode, 

and surface mode. The results quantitatively demonstrate the bifurcation retardation effect 

of the supporting substrate: the stiffer/thicker is the substrate, the higher is the bifur- 

cation limit. More importantly, it is further shown that there exists a theoretical upper 

bound of the bifurcation limit of a substrate/metal bilayer structure, which has not been 

reported before. Understandings from the present study may shed light on the optimal 

design of substrate/metal bilayer structures with enhanced deformability under complex 

biaxial loading conditions. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

1. Introduction 

The past decade has witnessed a surge of interest in flexible and stretchable electronics, an emerging technology with

an array of promising applications, such as epidermal electronics ( Kim et al., 2011; Yang et al., 2015 ), wearable devices

( Son et al., 2014 ) and bio-inspired electronic eyes ( Song et al., 2013 ). To power these devices, stretchable batteries, especially
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lithium-based batteries of high specific capacity, with comparable stretchability to the stretchable devices are highly desired

( Fu et al., 2016; Liu et al., 2017; Xu et al., 2013; Zhang et al., 2015 ). Flexible batteries are often subject to large and repeated

deformation to adapt to the dynamic shape change of stretchable electronic devices in use. The functional components of

flexible batteries, such as metal current collectors and electrodes, need to sustain cyclic deformation at a strain level up to

tens of percent. However, metal current collectors such as aluminum and copper used in batteries rupture when stretched

beyond 1%–2% of tensile strain ( Huang and Spaepen, 20 0 0; Nicola et al., 20 06 ). Necking of lithium metal anodes in lithium

batteries occurs at a strain of 25%, followed by a ductile fracture ( Gorgas et al., 1981; Liu et al., 2018 ). The need for enhancing

the stretchability of metal materials to meet the stringent requirement of stretchable batteries and electronics has induced

an impetus to develop more advanced structural elements and functional components such as substrate-supported metal

layers ( Lacour et al., 2003; Liu et al., 2018; Vandeparre et al., 2013 ). Indeed, substrate-supported lithium metal anodes

have been proven to exhibit stable mechanical and electrochemical performance ( Liu et al., 2018 ). However, fundamental

mechanism underpinning the enhanced stretchability of substrate-supported metal films under complex loading conditions

remains elusive. 

Stretchability of freestanding metal layers under in-plane loading is often limited by the initiation and development of

strain localization, i.e., necking instability ( Franz et al., 2013; Hutchinson and Neale, 1978; Storen and Rice, 1975; Zhang and

Wang, 2012 ). A freestanding metal layer deforms uniformly under a modest in-plane tensile loading. The uniform deforma-

tion of the metal layer becomes unstable when the loading increases to a sufficiently high level: infinitesimal perturbation

of the metal layer, such as non-uniform thickness or pre-existing defects, starts to grow in amplitude, leading to local thin-

ning in certain locations of the metal layer. On one hand, localized deformation due to local thinning leads to increased

stress level at the necking location (i.e., geometric softening); on the other hand, the metal material at the site of necking

hardens under plastic deformation to sustain the increased stress level (i.e., material hardening). When the geometric soft-

ening prevails over material hardening, the onset of necking instability occurs: the local thinning of metal layer continues

on to form a single neck, rupturing the metal film. Since a freestanding metal film fails by a single neck, the rupture strain

of a freestanding metal film is also named as the necking limit. By volume conservation, at the site of rupture, the local

thinning causes a local elongation on the order of the film thickness. Given the small thickness-to-length ratio of the film,

this local elongation contributes little to the overall rupture strain. As a result, freestanding metal films usually have small

rupture strains ( Espinosa et al., 2003; Li et al., 2005; Li and Suo, 2006 ). There exist a large amount of studies on the exper-

imental and numerical determination of necking limits for freestanding metal films with different material behaviors such

as plastic anisotropy ( Kuroda and Tvergaard, 20 0 0; Zhang and Wang, 2012 ), strain-rate sensitivity ( Ghosh, 1977; Khan and

Baig, 2011; Zhang and Ravi-Chandar, 2006 ), kinematic hardening ( Bettaieb and Abed-Meraim, 2017; Tvergaard, 1978 ), and

damage-induced softening ( Haddag et al., 2009; Mansouri et al., 2014 ). However, localized necking limits the maximum al-

lowable strain that a freestanding metal film can undergo during the operation of stretchable electronic devices. Therefore,

the development of new strategies to retard the occurrence of necking formation is of significant practical interest in the

field of stretchable batteries and electronics. 

As abovementioned, the local elongation due to necking formation requires space to accommodate. This space is available

to the freestanding film as the ruptured halves can freely move apart, but is unavailable to the film bonded to a substrate

subject to a modest tensile strain since the substrate constrains the deformation of metal layers. Consequently, a plastic or

an elastomer substrate may delocalize the strain field in the metal film, carrying the film to the strain far beyond the rupture

strain of a freestanding film ( Li et al., 2005 ). Guided by this principle, in the field of modern technologies, and especially

stretchable batteries, improving the stretchability of metal materials is achieved by bonding deformable substrates (e.g.,

elastomer or plastic) to metal layers. The large rupture strains of metal films bonded to plastic or elastomer substrates have

been demonstrated in experiments ( Gruber et al., 2004; Lu et al., 2007; Xiang et al., 2005 ), theoretical analysis and finite

element simulations ( Bigoni et al., 1997; Jia and Li, 2013; Li et al., 2005; Xue and Hutchinson, 2007 ). For example, plastic-

supported thin metal films can sustain tensile strains up to 50% before rupture ( Alaca et al., 2002; Hommel and Kraft, 2001;

Lu et al., 2007 , 2010; Yu and Spaepen, 2004 ). Additionally, plastic/elastomer-supported metal layers have been proven to

show significantly improved ductility and enhanced energy absorption when subject to high-intensity impulsive loads ( Ben

Bettaieb and Abed-Meraim, 2015; Jia and Li, 2013; Xue and Hutchinson, 2007 ). It is also demonstrated in experiments and

simulations that the substrate constraint to the necking development in the metal film disappears when the metal layer

detaches from the substrate ( Li et al., 2005; Lu et al., 2007 ). When substrate-supported metal films are subject to dynamic

stretching, the inertia effect on necking retardation and necking modes has also been investigated ( Amini and Nemat-Nasser,

2010; Amini et al., 2010; Morales et al., 2011; Shenoy and Freund, 1999; Xue and Hutchinson, 2008 ). 

Despite the success in effectively enhancing the rupture strain of metal films; an in-depth theoretical understanding of

the bifurcation instability of substrate-supported metal layers under biaxial in-plane tension is still far from being com-

plete. It is worth noting that freestanding metal films fail by a single neck, which is captured by the bifurcation analysis

at the long-wavelength limit (i.e., wavelength of the necking pattern is infinitely large). In stark contrast, experiments ( Lu

et al., 2007; Xiang et al., 2005 ) and simulations ( Li and Suo, 2007 ) have revealed that substrate-supported metal film under

in-plane biaxial tension may fail by forming multiple necks (a necking pattern at an intermediate wavelength) or surface

instability (non-uniform deformation at very short wavelength, i.e., the short-wavelength limit). This could be attributed to

the strain-delocalization effect of the substrate. Since most existing theoretical/numerical studies only consider the bifurca-

tion of substrate-supported metal films at the long-wavelength limit ( Ben Bettaieb and Abed-Meraim, 2015; Bettaieb and

Abed-Meraim, 2017; Jia and Li, 2013; Xue and Hutchinson, 20 07, 20 08 ), an all-wavelength bifurcation analysis is needed
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to understand the deformation instability of substrate-supported metal films. Moreover, substrate-supported metal layers 

in stretchable electronic devices are often subject to large and complicated in-plane biaxial tensile loading. For example,

the epidermal electronics covering the human skin experiences large biaxial stretches ( Kim et al., 2011 ). However, most ex-

isting theoretical/numerical studies assume plane-strain condition in the bifurcation analysis of bilayer structure ( Guduru

et al., 2006; Guduru and Freund, 2002; Shenoy and Freund, 1999 ). Consequently, theoretical understanding of the bifurca-

tion instability of substrate/metal bilayer under arbitrary biaxial in-plane tension remains elusive so far and requires further

investigation. 

Hutchinson and Tvergaard conducted bifurcation analysis to investigate the bifurcation instability of a freestanding metal

film under arbitrary biaxial in-plane tension ( Hutchinson and Tvergaard, 1980 ). In this study, we extend their effort to

substrate-supported metal films (i.e., a metal film bonded to the substrate via a perfect interface without delamination) un-

der arbitrary biaxial in-plane tension. Two representative bilayer structures are studied, namely, a metal layer supported by

a stiff plastic substrate, and a metal layer supported by a compliant elastomer substrate, respectively. We report quantita-

tive correlations between bifurcation limit, bifurcation modes and design parameters (material properties and substrate/film 

thickness) of substrate-supported metal films in the full range of biaxial in-plane tension. Most importantly, we show that

there exists a theoretical upper bound of the bifurcation limit of a substrate/metal bilayer structure and offer insights on the

underlying physics, which has not been reported previously. The rest of the paper is organized as follows. Section 2 describes

the constitutive equations and bifurcation analysis procedure for investigating the bifurcation limit of substrate-supported 

metal films. Section 3 reports numerical results of the bifurcation limit of substrate/film bilayers. Effect of substrate on the

bifurcation limit and bifurcation mode is discussed. Conclusions and remarks are given in Section 4 . 

2. Mechanics model 

2.1. Constitutive relations 

We describe the constitutive law of both the metal layer and the elastomer layer using the finite strain J2 deformation

theory of plasticity developed by Biot, Hutchinson, and Tvergaard ( Biot, 1965; Hutchinson and Tvergaard, 1980 ), as recapped

below. The materials are considered to be rate-independent and incompressible, with the constitutive law of the form 

σ̄i j = L i jkl ˙ ε kl + 

˙ p δi j (1) 

Here, σ̄i j is the Jaumann rate of the Cauchy stress, L ijkl is the instantaneous moduli, ˙ ε kl is the Eulerian strain rate, ˙ p is the

hydrostatic stress rate, δij is the Kronecker delta. (Hereinafter, ̄ denotes objective Jaumann rates, while � denotes time rates).

The instantaneous moduli L ijkl is given as 

L i jkl = 

2 

3 

E s 

[ 
1 

2 

(
δik δ jl + δil δ jk 

)
− 1 

3 

δi j δkl 

] 
− ( E s − E t ) s i j s kl 

σ 2 
e 

+ Q i jkl (2) 

where s ij is the deviatoric stress and σe = 

√ 

3 
2 s i j s i j is the effective stress, E s and E t are the secant modulus and tangent

modulus of the uniaxial true stress-strain curve at σ e , respectively. The last term Q ijkl satisfies the indicial symmetry that

Q i jkl = Q jikl = Q i jlk = Q kli j and only the following components are non-trivial in principal axes. 

Q 1212 = 

1 

3 

E s [ ( ε 1 − ε 2 ) coth ( ε 1 − ε 2 ) − 1 ] (3.1) 

Q 1313 = 

1 

3 

E s [ ( ε 1 − ε 3 ) coth ( ε 1 − ε 3 ) − 1 ] (3.2) 

Q 2323 = 

1 

3 

E s [ ( ε 2 − ε 3 ) coth ( ε 2 − ε 3 ) − 1 ] (3.3) 

Combining Eqs. (2) and (3.1) –(3.3) , we can prove that instantaneous moduli L ijkl for the metal layer share the indicial

symmetry that 

L i jkl = L jikl = L i jlk = L kli j (4) 

Explicit expressions of instantaneous moduli L ijkl are given in Appendix A1 . 

Consider a flat film under in-plane biaxial loading. Without loss in generality, the film is presumed to be in the plane

prescribed by axes x 2 and x 3 , with the axis x 1 being perpendicular to the film. For an in-plane biaxial proportional straining

history, the strain components are specified by 

ε 2 = X cosα (5.1) 

ε 3 = X sin α (5.2) 

ε 1 = −ε 2 − ε 3 (5.3) 
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For proportional straining, α is fixed and X is monotonically increased. Since tan α prescribes the strain ratio ɛ 3 / ɛ 2 , α can

be defined as the strain ratio angle. Three representative in-plane tensile loading conditions are identified by the value of α:

(i) α = 45 ◦ for equibiaxial tension with ε 2 / ε 3 = 1 , (ii) α = 90 ◦ for plane-strain tension with ε 2 / ε 3 = 0 , and (iii) α = 116 . 6 ◦

for uniaxial tension along the x 3 direction with ε 2 / ε 3 = −0 . 5 . Moreover, for 45 ◦ ≤α ≤ 116.6 ◦, ɛ 3 is always greater than ɛ 2 . The

J2 deformation theory gives the relation between the principal strain and the principal deviatoric stress as ε i = 

3 
2 E s 

s i = 

3 ε e 
2 σe 

s i .

Imposing the biaxial proportional straining history to the structure, we obtain the Cauchy stresses that 

σ1 = 0 (6.1)

σ2 = 

2 

3 

E s X ( 2 cos α + sin α) (6.2)

σ3 = 

2 

3 

E s X ( cos α + 2 sin α) (6.3)

The effective stress and effective strain are 

σe = 

√ 

3 

2 

s i j s i j = 

2 √ 

3 

E s X 

√ 

1 + 

1 

2 

sin 2 α (7.1)

ε e = 

√ 

2 

3 

ε i j ε i j = 

2 √ 

3 

X 

√ 

1 + 

1 

2 

sin 2 α (7.2)

For a metal material characterized by a power-law hardening σ = K ε N , the secant modulus and tangent modulus are

given by 

E s = 

σe 

ε e 
= Kε N−1 

e (8.1)

E t = 

d σe 

d ε e 
= NKε N−1 

e (8.2)

Incompressible neo-Hookean model is adopted to describe the elastomer substrate, with strain energy density given by

 = 

E 
6 ( λ

2 
1 

+ λ2 
2 

+ λ2 
3 

− 3 ) , where E is the initial Young’s modulus and λi = e ε i ( i = 1 − 3 ) is the principal stretch. Following

Biot (1965) , the rate form of constitutive relation for a neo-Hookean material can be given as follows 

σ̄11 = 

4 E 

9 

λ2 
1 ˙ ε 11 − 2 E 

9 

λ2 
2 ˙ ε 22 − 2 E 

9 

λ2 
3 ˙ ε 33 + 

˙ p (9.1)

σ̄22 = −2 E 

9 

λ2 
1 ˙ ε 11 + 

4 E 

9 

λ2 
2 ˙ ε 22 − 2 E 

9 

λ2 
3 ˙ ε 33 + 

˙ p (9.2)

σ̄33 = −2 E 

9 

λ2 
1 ˙ ε 11 − 2 E 

9 

λ2 
2 ˙ ε 22 + 

4 E 

9 

λ2 
3 ˙ ε 33 + 

˙ p (9.3)

σ̄23 = 

E 

6 

(
λ2 

2 + λ2 
3 

)
˙ ε 23 + 

E 

6 

(
λ2 

2 + λ2 
3 

)
˙ ε 32 (9.4)

σ̄31 = 

E 

6 

(
λ2 

1 + λ2 
3 

)
˙ ε 13 + 

E 

6 

(
λ2 

1 + λ2 
3 

)
˙ ε 31 (9.5)

σ̄12 = 

E 

6 

(
λ2 

1 + λ2 
2 

)
˙ ε 12 + 

E 

6 

(
λ2 

1 + λ2 
2 

)
˙ ε 21 (9.6)

Eqs. (9.1) –( 9.6 ) can be also written in the form of σ̄i j = L i jkl ˙ ε kl + ˙ p δi j , the explicit form of instantaneous moduli L ijkl for

neo-Hookean material are summarized in Appendix A2 . The Cauchy stress in the elastomer layer is given by 

σ1 = 0 (10.1)

σ2 = 

E 

3 

(
λ2 

2 − λ2 
1 

)
= 

E 

3 

(
e 2 ε 2 − e 2 ε 1 

)
(10.2)

σ = 

E (
λ2 − λ2 

)
= 

E (
e 2 ε 3 − e 2 ε 1 

)
(10.3)
3 

3 

3 1 3 
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2.2. Bifurcation analysis 

A substrate/metal bilayer structure or a freestanding metal film is considered. When subjected to a subcritical in-plane

biaxial loading, the structure is in the pre-bifurcation state and undergoes homogeneous deformation so that the rate equi-

librium equations admit trivial solution; when the biaxial loading reaches a critical level, a non-trivial solution representing

non-homogeneous deformation becomes possible to the rate equilibrium equations, indicating the onset of bifurcation insta-

bility. The critical loading triggering the bifurcation instability is named the bifurcation limit. To determine the bifurcation

limit, we perform bifurcation analysis following an established procedure ( Bigoni et al., 1997; Hutchinson and Tvergaard,

1980 ). Equilibrium and incompressibility require that 

c i jkl v l,ki + p , j = 0 ( j = 1 , 3 ) (11.1) 

v i,i = 0 (11.2) 

where v ( x 1 , x 2 , x 3 ) is the velocity field and c ijkl the model coefficients. It is worthwhile to mention that the development

of Eqs. (11) does not rely on any prescribed constitutive law so that they are valid for both a power-law material layer

and a neo-Hookean elastomer layer. Detailed derivations of the governing equations Eqs. (11) and explicit expressions of

coefficients c ijkl for both the power-law material and the neo-Hookean elastomer are listed in Appendix A3 . 

Nontrivial solutions to the governing Eqs. (11) take the form 

v 1 = A 1 e 
zk x 1 cos ( k 2 x 2 ) cos ( k 3 x 3 ) (12.1) 

v 2 = A 2 e 
zk x 1 sin ( k 2 x 2 ) cos ( k 3 x 3 ) (12.2) 

v 3 = A 3 e 
zk x 1 cos ( k 2 x 2 ) sin ( k 3 x 3 ) (12.3) 

p = A 4 e 
zk x 1 cos ( k 2 x 2 ) cos ( k 3 x 3 ) (12.4) 

Here k 2 and k 3 are wavenumbers that characterize the surface undulation. A j ( j = 1 , 4 ) , and z are parameters, which may

take real or complex values. The bifurcation limit only depends on the ratio between k 2 and k 3 . Thus we can write 

k 2 = k cos � (13.1) 

k 3 = k sin � (13.2) 

where k is positive and 0 ≤�≤π /2. To elucidate the physical meaning of k and �, Fig. 1 plots the normalized out-of-plane

velocity, cos ( k cos ( �) x 2 ) cos ( k sin ( �) x 3 ), at the film surface. The color contour represents the normalized velocity value, with

red being 1 and blue −1 . Perspective view and top view of the checkerboard-shaped velocity field are shown in Fig. 1 a

and Fig. 1 b–d, respectively. Upon the critical loading, any array of troughs (blue pits shown in Fig. 1 ) of the checkerboard-

shaped velocity field may coalesce and form a necking band, which is highlighted by a black line in Fig. 1 a. The wavelength

between neighboring parallel necking bands along x 2 and x 3 axis is 2 π
k 2 

and 

2 π
k 3 

, respectively. The necking bands make an

inclination angle � = arctan ( k 3 / k 2 ) with the x 3 direction. As an example, the out-of-plane velocity field with � = 45 ◦ and

the associated necking bands are plotted in Fig. 1 b. The necking bands make an inclination angle of 45 ◦ with the x 3 direction.

It is worth noting that two groups of necking bands may form for 0 ◦ < �< 90 ◦. For � = 45 ◦, one group of necking bands

(black lines in Fig. 1 b) has an angle of 45 ◦ measured counterclockwise from the x 3 axis; and another group of necking bands

(dark red lines) makes an angle of 45 ◦ measured clockwise from x 3 axis. The two groups of necking bands are symmetric

with respect to the x 3 axis. Experimental evidence has confirmed the coexistence of the two symmetric clusters of necking

bands ( Xiang et al., 2005 ). Fig. 1 c and d show the out-of-plane velocity field for � = 90 ◦ and � = 0 ◦, respectively. The

associated necking bands are perpendicular to the x 3 axis for � = 90 ◦ and parallel to the x 3 axis for � = 0 ◦. For � = 0 ◦

or 90 ◦. Only one group of necking bands exists because the necking bands and the symmetry axis coincide. In summary, k

describes the wavelength of the necking pattern formed due to bifurcation and � prescribes the necking band orientation. 

We next determine the bifurcation limit. Substituting the solution in Eq. (12) into the governing Eqs. (11) yields 4 alge-

braic equations for A 1 , A 2 , A 3 and A 4 , ⎡ 

⎢ ⎣ 

M 11 M 12 M 13 M 14 

M 21 M 22 M 23 M 24 

M 31 M 32 M 33 M 34 

M 41 M 42 M 43 M 44 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

A 1 

A 2 

A 3 

A 4 

⎤ 

⎥ ⎦ 

= 0 (14) 

All components M ij of the matrix M depend on z, X , � and k . Explicit expressions of M ij are listed in Appendix A4 . To

have nontrivial solutions, the determinant above must vanish, i.e., 

det ( M ) = 0 (15) 
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Fig. 1. Normalized out-of-plane velocity field cos ( k cos ( �) x 2 ) cos ( k sin ( �) x 3 ) at the metal film surface. (a) Perspective view of the out-of-plane velocity field. 

The color contour from blue to red represents normalized velocity value ranging from −1 to 1. Top views of the normalized out-of-plane velocity field with 

(b) � = 45 ◦ , (c) � = 90 ◦ and (d) � = 0 ◦ are presented. A necking band may form via the coalescence of an array of troughs of the out-of-plane velocity 

field. � specifies the necking band orientation and k describes the necking pattern wavelength. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The vanishing determinant det (M) leads to a cubic equation of z 2 , with six complex-valued roots z that can be solved

numerically. The wavenumber k can be eliminated in Eq. (15) and thus values of the six roots of z depend only on c ijkl (i.e.,

X ) and �. Moreover, the cubic equation of z 2 are in the elliptic range and thus there are three roots with positive real part

and the other three roots with negative real part ( Hutchinson and Tvergaard, 1980 ). 

Let A j(i ) ( j = 1 , 4 ) be a normalized nontrivial solution of the Eq. (14) associated with z i ( i = 1 , 6 ) . In general, they are

complex-valued. Then the velocity field given in Eqs. (12) can be written as a linear combination of the six solutions

A j(i ) ( i = 1 , 6 ) , with Re [] denoting the real part of a complex number 

v 1 = 

6 ∑ 

i =1 

ξi Re 
[
A 1(i ) e 

z i k x 1 
]
cos ( k 2 x 2 ) cos ( k 3 x 3 ) (16.1)

v 2 = 

6 ∑ 

i =1 

ξi Re 
[
A 2(i ) e 

z i k x 1 
]
sin ( k 2 x 2 ) cos ( k 3 x 3 ) (16.2)

v 3 = 

6 ∑ 

i =1 

ξi Re 
[
A 3(i ) e 

z i k x 1 
]
cos ( k 2 x 2 ) sin ( k 3 x 3 ) (16.3)

p = 

6 ∑ 

i =1 

ξi Re [ A 4(i ) e 
z i k x 1 ] cos ( k 2 x 2 ) cos ( k 3 x 3 ) (16.4)

ξ i in Eqs. (16) are six constants to be determined by boundary conditions. Therefore, the bifurcation limit X and corre-

sponding k and � can be obtained by solving a boundary value problem. To comprehensively understand the bifurcation

instability of substrate-supported metal film structures, we need to conduct bifurcation analysis on three representative ma-

terial structures, namely, a free-standing metal film, a semi-infinite metal layer (i.e., an infinitely-thick free-standing metal

layer), and a metal film supported by a substrate. 
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Case 1. For a free-standing metal film of thickness H , there are six boundary conditions: three tractions vanish at the top

surface of the film and three tractions vanish at the bottom surface of the film, i.e., ˙ t 1 j = 0 ( j = 1 , 3 ) at both the top surface

and bottom surface. Plugging expression of ˙ t i j into six boundary conditions leads to a set of six algebraic equations for

ξi ( i = 1 , 6 ) of the form 

6 ∑ 

i =1 

C ji ξi = 0 (17) 

where j = 1 , 6 and the values of C ji are real. The expressions of C ji are lengthy and are given in Appendix A5 . They

depend on X , � and k . To have nontrivial solutions ξ i to Eq. (17) , the determinant of the matrix C must vanish, 

det ( C ) = 0 (18) 

This equation determines the critical X for a given wavenumber k and necking band orientation �. Next, we describe the

detailed procedure of solving the bifurcation limit for a straining history with a fixed α: For a given combination of k and

� within the range of 0 ≤ k < ∞ and 0 ≤�≤π /2, a critical X is obtained by solving Eqs. (15) and (18) together, the critical

X prescribes the critical strain at which the bifurcation mode identified by k and � is triggered. By screening all the k - �

combinations in the range above, a set of critical X can be obtained as a function of k and �. The lowest X among all critical

X ’s gives the bifurcation limit. The � and k associated with the bifurcation limit (the lowest X ) specify the necking band

orientation and spacing between neighboring necking bands. 

Case 2. For a semi-infinite metal layer, i.e., a metal layer sitting in a semi-infinite space of x ≤ 0, solutions shown in Eq.

(16) need to remain finite when x 1 → −∞ . Therefore, v i and p are a linear combination of three solutions A j(i ) ( j = 1 , 4 )

for which z i ( i = 1 , 3 ) has a positive real part. The three boundary conditions for a semi-infinite metal layer are that three

tractions equal to zero at the traction-free top surface, which gives a set of three algebraic equations for ξi (i = 1 , 3) with

coefficient C defined in Appendix A6 . The determinant of the coefficient matrix must vanish, det (C) = 0 , to give nontriv-

ial solutions. Then for a given history of proportional straining, the bifurcation limit of a semi-infinite metal layer can be

determined by solving Eqs. (15) and (18) with matrix C given in Appendix A6 . 

Case 3. As the key topic of this paper, we investigate the bifurcation of the substrate/metal bilayer structure, i.e., a metal

film supported by a substrate, under biaxial tension. Note that Eqs. (11)–(18) are applicable for both the metal film and

the substrate, but with different values of z i , A j(i ) ( j = 1 , 4 ) , and ξ i , denoted as z + 
i 

, A 

+ 
j(i ) 

, and κ+ 
i 

for the film, and z −
i 

, A 

−
j(i ) 

,

and ξ−
i 

for the substrate. There are twelve boundary conditions for the bilayer structure: three tractions vanish at the top

surface of the film, three tractions vanish at the bottom surface of the substrate, three tractions and three displacements are

continuous at the interface. These boundary conditions give a set of 12 homogeneous algebraic equations for ξ+ 
1 

, ξ+ 
2 

, ξ+ 
3 

, ξ+ 
4 

,

ξ+ 
5 

, ξ+ 
6 

, ξ−
1 

, ξ−
2 

, ξ−
3 

, ξ−
4 

, ξ−
5 

, ξ−
6 

, with coefficient matrix H given in Appendix A7 . To have nontrivial solutions, the determinant

must equal to zero, det (H) = 0 . This equation together with Eq. (15) determines the critical X that triggers the bifurcation

for a given combination of k and �. Bifurcation limit of a bilayer structure is set by the lowest X , the corresponding necking

band spacing and orientation are specified by the value of k and � which give the lowest X . 

3. Results 

3.1. Bifurcation analysis of a semi-infinite metal layer 

We consider a semi-infinite metal layer lying on the half-space x 1 ≤ 0 with its top surface identified by x 1 = 0 and thick-

ness being infinite. Such a semi-infinite metal layer has no characteristic length, as a result, the bifurcation limit is insen-

sitive to the wavenumber k . Upon bifurcation, the non-uniform velocity field specified in Eq. (12) starts to develop: the top

surface of the semi-infinite metal layer becomes wavy and the region near the surface experiences non-uniform deforma-

tion. Note that the non-uniform deformation prescribed by Eq. (12) decays exponentially in the thickness direction. Given

the infinite thickness of the semi-infinite metal layer, the majority of the semi-infinite layer is away from the top surface

and their deformation remains to be uniform. Such a bifurcation mode is defined as the surface mode , which eventually

evolves into a series of surface cracks upon further straining beyond the bifurcation limit ( Hutchinson and Tvergaard, 1980 ).

Bifurcation of a semi-infinite metal layer is always associated with the surface mode. 

Fig. 2 plots bifurcation limit in the space of ɛ 2 and ɛ 3 with various hardening indices N . Such a figure is usually referred

to as bifurcation limit plot. In the plot, proportional loading with a given α corresponds to progressing along a radial line

(depicted in Fig. 2 as the dotted arrow line) which makes an angle α with the axis of ɛ 2 . The range of α in all bifurcation

limit plots of this paper is from 45 ◦ (equibiaxial tension) to 116.6 ◦ (uniaxial tension). X denotes the distance from the origin.

The critical bifurcation strains (i.e., ε 2 = X cos α and ε 3 = X sin α) can be obtained from the bifurcation limit curve: For a

given α and a metal of hardening index N , bifurcation occurs at the critical strains where the bifurcation limit curve of N

is intersected by the dotted arrow line. The bifurcation limit curves are symmetric about the 45 ◦ line because switching

ɛ 2 and ɛ 3 does not change the bifurcation limit. It can be concluded from Fig. 2 that an infinitely-thick metal layer with a

larger hardening index has a higher bifurcation limit. 
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Fig. 2. Bifurcation limit plot of a semi-infinite metal layer, with its bifurcation mode being surface mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After analyzing the bifurcation mode and bifurcation limit, we next examine the orientation of necking bands nucleated

due to the surface-mode bifurcation of semi-infinite metal layers. As aforementioned, necking bands orientation is dictated

by the � associated with the bifurcation limit curve. For N = 0 . 02 , the bifurcation limit curve (blue) is divided into two

segments AB and BC by a point B identified by α ≈ 107.5 ◦. Along the segment AB, � takes value of 90 ◦ and varies mono-

tonically on the segment BC from �∼= 

66 ◦ at B to �∼= 

48 ◦ at C. It means, along AB, the necking bands are perpendicular

to the ɛ 3 direction (i.e., the direction of larger strain, since ɛ 3 > ɛ 2 for 45 ◦ ≤α ≤ 116.6 ◦), while along BC necking bands are

inclined to the ɛ 3 direction. The cases with N = 0 . 1 and N = 0 . 2 show the similar trend. The necking bands start to incline

when α > 106.5 ◦ and α > 106 ◦ for N = 0 . 1 and N = 0 . 2 : � varies monotonically from 66 ◦ to 46 ◦ for 106.5 ◦ ≤α ≤ 116.6 ◦ with

N = 0 . 1 , and from 70 ◦ to 44 ◦ for 106 ◦ ≤α ≤ 116.6 ◦ with N = 0 . 2 . The transition point is labeled by the thick dark dot for each

curve in Fig. 2 . As mentioned above, bifurcation of a semi-infinite metal layer is insensitive to the wavenumber k . Therefore,

the spacing between neighboring necking bands formed in a semi-infinite metal layer is arbitrary. 

3.2. Bifurcation analysis of a free-standing metal film 

We next present results of bifurcation analysis on a free-standing metal film of thickness h . To determine bifurcation

limit of a free-standing metal film subjected to biaxial in-plane tension, we plot critical X as a function of dimensionless

wavenumber kh , for three representative loading conditions: equi-biaxial tension with α = 45 ◦ ( Fig. 3 a), plain-strain tension

with α = 90 ◦ ( Fig. 3 b) and uniaxial tension with α = 116 . 6 ◦ ( Fig. 3 c). It is worth noting that, in Fig. 3 a–c, the critical X at a

given kh corresponds to the value of � which minimizes X among all possible values of � (0 ◦ ≤�≤ 90 ◦). 

We first check the critical X at the long wavelength limit of kh → 0 and short wavelength limit of kh → ∞ . In the short

wavelength limit, for all the three cases, the vanishing wavelength of the non-uniform deformation given by Eq. (12) devel-

oped at the film surface is trivial compared with the film thickness h and the amplitude of the non-uniform deformation

decays exponentially in the thickness direction, indicating the non-uniform deformation only affects the surface layer. There-

fore, the bifurcation of free-standing metal film at the short wavelength limit is corresponding to the surface mode, with

critical strains (i.e., ɛ 2 and ɛ 3 ) approaching the surface-mode bifurcation limit given in Fig. 2 . In the long wavelength limit,

for plain-strain tension shown in Fig. 3 b, the bifurcation analysis gives a critical strain equal to the hardening index, ε 3 = N,

which agrees with the Considère condition. 

We next check the critical X in all range of dimensionless wave number kh in order to determine the bifurcation limit.

For all the three cases, the lowest critical X , the bifurcation limit, corresponds to the long wave limit of kh → 0. The corre-

sponding bifurcation mode is defined as the single-necking mode ; as the name implies, the non-uniform deformation due to

bifurcation has infinite wavelength and develops into a single necking band in the free-standing metal film when applied

strain reaches the bifurcation limit. It is obvious that the bifurcation limit increases with increasing hardening index N . The

critical X in all range of kh for equi-biaxial tension ( Fig. 3 a) and plane-strain tension ( Fig. 3 b) is associated with � = 90 ◦.

But necking bands formed under uniaxial tension ( Fig. 3 c) corresponds to some � in the open range of 39 ◦ < �< 55 ◦. In

particular, the � related to bifurcation limit (at the long wave limit) is approximately 54.9 ◦, 52.5 ◦ and 51.9 ◦ for N = 0 . 02 ,

N = 0 . 1 and N = 0 . 2 , respectively. 

As shown in Fig. 3 d, bifurcation limit of a free-standing metal film for 45 ◦ ≤α ≤ 116.6 ◦ is plotted in the space of ɛ 2
and ɛ 3 . The bifurcation limit plot summarizes information about the three key ingredients of bifurcation of a freestanding

metal film under tension: the bifurcation limit determined by X , the bifurcation mode prescribed by k , and the necking
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Fig. 3. Critical X at which bifurcation occurs is plotted as a function of dimensionless wavenumber kh , for three representative proportional straining 

conditions (a) α = 45 ◦ , (b) α = 90 ◦ and (c) α = 116 . 6 ◦ . (d) Bifurcation limit plot of a free-standing metal film. The bifurcation mode of a free-standing 

metal film is the single-necking mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

band orientation specified by �. A freestanding metal film with a higher hardening index shows enhanced bifurcation limit.

The bifurcation mode of freestanding metal film is single-necking mode with kh = 0 , indicating that a free-standing metal

film fails by the formation of a single necking band in response to in-plane biaxial tension. Regarding the necking band

orientation �, for N = 0 . 02 , along the segment AB, � is 90 ◦ and varies monotonically on the segment BC from � = 82 . 9 ◦ at

B with α = 90 ◦ to �∼= 

54.9 ◦ at C. For N = 0 . 1 and N = 0 . 2 , the necking band starts to incline when α > 92.6 ◦ and α > 94 ◦, as

highlighted by the black dot. 

3.3. Bifurcation analysis of a metal film on an elastomer substrate 

We consider an elastomer/metal bilayer structure, which is characterized by three dimensionless parameters: hardening

index N , thickness ratio H s / H f and stiffness ratio E / K between the substrate and the film. In making Fig. 4 , the stiffness ratio

is taken to be E/K = 1 . 05 and the hardening index is N = 0 . 02 . We vary the thickness ratio: H s / H f = 1 or 5 to elucidate the

effect of substrate thickness on the bifurcation instability of the elastomer/metal bilayer. 

Fig. 4 plots the critical X of the bilayer as a function of the dimensionless wavenumber kH f for the three representative

straining conditions. A curve for the freestanding metal film (blue lines) is included in Fig. 4 for comparison purposes. At a

given kH f , critical X is obtained by finding the � which minimizes X . In the short wave limit kH f → ∞ , for H s / H f = 1 (red

lines) and 5 (green lines), the non-uniform deformation with trivial wavelength only affects the surface layer of the metal

film and thus does not sense the existence of the underlying elastomer substrate; the critical X approaches the short-wave

limit of the free-standing metal film (i.e., the surface-mode limit of a semi-infinite metal layer), as highlighted by the dash-

dotted line in Fig. 4 . In the long wave limit kH f → 0, in stark contrast with the freestanding metal film, the critical X of the

bilayer for single-necking bifurcation mode becomes infinite as shown by the dotted line (green and red) in Fig. 4 b. Instead,

the bifurcation mode for the bilayer at the long wave limit kH f → 0 is associated with the shear-band formation, with the

corresponding critical X termed as the elliptic limit ( Bigoni et al., 1997; Hutchinson and Neale, 1978 ). The elliptic limit is

also insensitive to the wavenumber and is represented by the black dashed line in Fig. 4 a–c. 

For H s / H f = 1 (red lines), with all the three representative straining conditions including equi-biaxial tension ( Fig. 4 a),

plane-strain tension ( Fig. 4 b) and uniaxial tension ( Fig. 4 c), the critical X remains at the elliptic limit for small kH f , and

drops precipitously as the wavenumber increases, reaching the lowest X for bifurcation at an intermediate value of kH f .

Bifurcation occurs at k H f = 0 . 9 , 1.15 and 1.9 for α = 45 ◦ (equi-biaxial), 90 ◦ (plane-strain) and 116.6 ◦ (uniaxial), respectively.

The bifurcation mode with a non-zero finite kH f corresponds to the formation of multiple periodic necking bands, therefore

the bifurcation mode of the substrate-supported metal film is classified as the multiple-necking mode . Further increasing the

substrate thickness complicates the bifurcation mode. For a bilayer with H s / H f = 5 (green lines) under plane-strain ( Fig. 4 b)
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Fig. 4. Critical X of an elastomer/metal bilayer is plotted as a function of kH f for various proportional straining conditions (a) α = 45 ◦ , (b) α = 90 ◦ and 

(c) α = 116 . 6 ◦ . To show the effect of substrate thickness on the bifurcation of the bilayer, thickness ratio is varied from 0 (free-standing metal film) to 

1 and 5. 
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or uniaxial tension ( Fig. 4 c), minimum X is reached at a non-zero finite kH f and thus the bifurcation is associated with

multiple-necking mode; while under equi-biaxial tension ( Fig. 4 a), X minimizes at kH f → ∞ which is corresponding to the

surface mode. Fig. 4 a–c also compares the bifurcation limit X of elastomer/metal bilayer to that of the freestanding metal

film. It is evident that the presence of the elastomer substrate enhances the bifurcation limit: the thicker the substrate, the

higher the bifurcation limit X . 

Critical � associated with curves in Fig. 4 is determined by finding the � which minimizes X at a given kH f . Similar

to that of a free-standing metal film, for equi-biaxial tension ( Fig. 4 a) and plane-strain tension ( Fig. 4 b), the bifurcation of

elastomer/metal bilayers corresponds to � = 90 ◦ for any kH f . The associated necking bands are always transverse to the x 3
axis (the direction with larger strain); For uniaxial tension ( Fig. 4 c), � is in the range of 47 ◦ ≤�≤ 56 ◦ for H s / H f = 1 and

47 ◦ ≤�≤ 57 ◦ for H s / H f = 5 , indicating the formation of slanted necking bands. The � related to the bifurcation limit (lowest

X ) is approximately 54 ◦, 52 ◦ and 51 ◦ for H s / H f = 0 (free-standing metal film), H s / H f = 1 and H s / H f = 5 , respectively. It can

be concluded that the elastomer substrate not only affects the bifurcation mode and corresponding bifurcation limit, but it

also changes the orientation of the developed necking bands. 

Fig. 5 shows the bifurcation limit plots of an elastomer-supported metal layer, for three different values of N = 0 . 02

( Fig. 5 a), 0.1 ( Fig. 5 b), and 0.5 ( Fig. 5 c), respectively. Stiffness ratio E / K is fixed to 1.05. We will elaborate on the effect of

substrate thickness on the bifurcation limit of metal films in four aspects: 

1) Bifurcation retardation: Fig. 5 a shows three bifurcation limit curves corresponding to H s / H f = 0 (free metal film), 1, and

5. Here, N = 0 . 02 . For each curve, it is evident that the bifurcation limit strain ɛ 3 under plane-strain tension ( ε 2 = 0 )

is lower than those under equibiaxial tension and uniaxial tension. For example, when H s / H f = 1 , the critical necking

limit strains ɛ 3 are 0.28, 0.03, and 0.18, for α = 45 ◦ (equi-biaxial), 90 ◦ (plane-strain) and 116.6 ◦ (uniaxial), respectively.

In this sense, previous studies assuming plane-strain condition tend to underestimate the bifurcation limit of the metal

layers on elastomer substrate subject to uniaxial tensile loading ( Li and Suo, 2006 ). Fig. 5 a compares curves with various

thickness ratios: for any given α, the bifurcation strain of an elastomer-supported metal film is higher than that of the

freestanding metal film. In other words, the necking is retarded to occur at a higher strain by the elastomer substrate.
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Fig. 5. Bifurcation limit plots of elastomer-supported metal layers with various H s / H f . The stiffness ratio E/K = 1 . 05 . (a) Hardening index N of metal layer 

is 0.02 (a), 0.1 (b) and 0.5 (c), respectively. Three distinct bifurcation modes, including single-necking mode, multiple-necking mode and surface mode, are 

represented by blue dashed line, red solid line, and green dashed line, respectively. Theoretical upper bound of bifurcation limit of substrate/metal bilayers 

is delineated (grey dotted lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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The thicker the substrate, the more significant retardation of bifurcation occurrence. Similar bifurcation retardation effect

and its dependence on H s / H f are evident in Fig. 5 b and c, in which N = 0 . 1 and N = 0 . 5 , respectively. 

2) Bifurcation mode: As shown in Fig. 4 , at the three representative straining conditions, there exist three possible critical

bifurcation modes for the elastomer/metal bilayer structure: single-necking mode, multiple-necking mode, and surface 

mode. For example, single-necking mode occurs in free-standing metal films; multiple-necking mode dominates in elas-

tomer/metal bilayer with H s / H f = 1 and 5 under plane-strain and uniaxial straining; Surface mode prevails for bilayer

with a thick substrate ( H s / H f = 5 ) under equi-biaxial tension. Bifurcation modes of bilayers in all range of α are pre-

sented in Fig. 5 . Fig. 5 a–c shows critical bifurcation modes of elastomer/metal bilayers. With the stiffness ratio and hard-

ening index fixed, the bifurcation modes are affected by the thickness ratio and the straining ratio angle α. In general, for

a given α, when substrate thickness increases, bifurcation mode of elastomer/metal bilayer tends to transit from single-

necking mode, to multiple-necking mode, and finally to the surface mode. The condition under which a bifurcation mode

occurs is summarized as follows: (i) Single-necking mode (blue dashed line in Fig. 5 ): As shown in Fig. 5 , single-necking

mode prevails in free-standing metal film with any hardening index at any α (45 ◦ ≤α ≤ 116.6 ◦). (ii) Multiple-necking

mode (red solid line in Fig. 5 ): Elastomer/metal bilayer with thin substrate tend to undergo multiple-necking mode.

For example, for bilayers with weakly hardening metal ( N = 0 . 02 in Fig. 5 a and N = 0 . 1 in Fig. 5 b), multiple-necking

mode is prevailing for thickness ratio of H s / H f = 1 at any straining angle 45 ◦ ≤α ≤ 116.6 ◦; Elastomer/metal bilayers

with thick substrate only experience multiple-necking mode at large α. For H s / H f = 5 , multiple-necking mode occurs

at 51.1 ◦ ≤α ≤ 116.6 ◦ for N = 0 . 02 ( Fig. 5 a), 105.1 ◦ ≤α ≤ 116.6 ◦ for N = 0 . 1 ( Fig. 5 b), and 113.5 ◦ ≤α ≤ 116.6 ◦ for N = 0 . 5

( Fig. 5 c), respectively. (iii) Surface mode (green dashed line in Fig. 5 ): surface mode appears only when the substrate be-

comes thick. For instance, surface mode occurs in laminates with H s / H f = 5 and N = 0 . 02 when 45 ◦ ≤α < 65.1 ◦ ( Fig. 5 a);

and in laminates with H s / H f = 5 and N = 0 . 1 when 45 ◦ ≤α < 105.1 ◦ ( Fig. 5 b). 

3) Upper bound of bifurcation limit of elastomer/metal bilayer: Bifurcation retardation effect of the elastomer substrate is

attributed to the mechanical constraint of the substrate to the metal film. Strong mechanical constraint from the thick

substrate leads to high resistance for the occurrence of necking bands, giving rise to suppression of single/multiple-

necking mode and thus enhanced bifurcation limit corresponding to surface mode (e.g. curves of H s / H f = 5 in Fig. 5 ). It

is important to realize that the surface mode bifurcation only affects deformation in an infinitesimally thin region under-

neath the metal film surface. Considering the finite thickness of the film, the infinitesimally thin region does not sense

the existence of the substrate. It implies that the elastomer substrate cannot influence the bifurcation limit when the
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Fig. 6. Critical X is plotted as a function of kH f to show the effect of substrate stiffness on the bifurcation of the elastomer/metal bilayer, for three 

representative straining conditions (a) α = 45 ◦ , (b) α = 90 ◦ and (c) α = 116 . 6 ◦ . 
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surface mode becomes the dominating bifurcation mode of the elastomer/substrate bilayer. In other words, the surface-

mode bifurcation limit of the metal film sets the theoretical upper bound for bifurcation limit of the elastomer/metal

bilayer: No matter how thick the substrate is, the bifurcation limit of the elastomer/metal bilayer cannot be increased be-

yond the surface-mode limit of the metal film itself. In Fig. 5 , it is evident that bifurcation limit curves of elastomer/metal

bilayers are capped by the theoretical upper bounds (grey dotted line), the surface-mode bifurcation limit of the metal

film. In Fig. 5 c, for N = 0 . 5 , bifurcation limit curves with H s / H f = 1 and H s / H f = 5 coincide with the upper bound curve

for 45 ◦ ≤α ≤ 113.5 ◦; it indicates that once the upper bound is reached (with H s / H f = 1 ), further increasing the substrate

thickness (to H s / H f = 5 ) does not enhance the bifurcation limits, which is in line with the analysis above. 

4) Necking band orientation: To show the necking band orientation �, in Fig. 5 , each bifurcation limit curve is divided

into two segments by a black dot. The right segment is corresponding to � = 90 ◦ with necking bands occurring along

a direction 90 ◦ away from (i.e. perpendicular to) the x 3 direction; while the left segment corresponds to some � in

the open range of 0 < �< π /2 and the necking bands appear along a slanted direction. For example, in Fig. 5 b, for the

bilayer with H s / H f = 1 , � varies from 83.9 ◦ to 47.9 ◦ for 97.6 ◦ ≤α ≤ 116.5 ◦, where α = 97 . 6 ◦ corresponds to the black

dots. Necking band orientation angle has been extensively studied in uniaxial-tensile experiments of substrate-supported

metal layers ( Gruber et al., 2004; Lu et al., 2010 ). For example, necking bands in a thin copper film (170 nm thick)

supported by a polyimide substrate (100 μm) exhibit an inclination angle about 60 ◦ away from the uniaxial tension

direction ( Xiang et al., 2005 ). Our calculation shows that for N = 0 . 02 , under uniaxial tension ( α = 116 . 6 ◦), � = 54 . 9 ◦,

52.9 ◦, and 50.9 ◦ for H s / H f = 0 , 1 and 5, respectively, which agrees reasonably well with the experiments. 

Effect of substrate stiffness on the bifurcation limit is shown in Figs. 6 and 7 with thickness ratio fixed at H s / H f = 5 .

Fig. 6 shows X as a function of kH f with E/K = 0 (Free-standing metal layer), 0.2, 1.05, and 2 for the three representative

straining conditions. The effect of bifurcation retardation becomes more significant as the substrate stiffness E / K increases.

The stiffer the substrate, the higher the bifurcation limit. Fig. 6 further reveals the effect of substrate stiffness on the bifur-

cation mode. With increasing E / K , bifurcation mode of elastomer/metal bilayer tends to transit from single-necking mode, to

multiple-necking mode, and finally to the surface mode. For example, under equi-biaxial tension ( Fig. 6 a), the bifurcation of

elastomer/metal bilayers corresponds to single-necking mode for E/K = 0 , multiple-necking mode for E/K = 0 . 2 , and surface

mode for E/K = 1 . 05 and 2. A similar transition in bifurcation mode is evident in Fig. 6 b and c. As abovementioned, bifur-

cation limit of elastomer/metal bilayer is capped by the surface-mode limit of the metal film. Therefore, once the critical

bifurcation limit reaches the surface-mode limit, further increasing the substrate stiffness cannot raise the bifurcation limit,

as exemplified by the green and purple lines shown in Fig. 6 a. 

Bifurcation limit plots with various stiffness ratios and metal hardening indices are shown in Fig. 7 . Fig. 7 a shows four bi-

furcation limit curves for N = 0 . 02 corresponding to E/K = 0 , 0.2, 1.05, and 2. Single-necking mode, multiple-necking mode,
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Fig. 7. Bifurcation limit plot of elastomer-supported metal layer with various E / K . Hardening index N of metal layer is (a) 0.02, (b) 0.1 and (c) 0.5. Thickness 

ratio is taken to be H s / H f = 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and surface mode are highlighted by blue, red, and green lines, respectively. Bifurcation of an elastomer/metal bilayer can

be retarded to a higher strain by attaching the metal film to a stiffer elastomer substrate. Bifurcation modes are strongly

affected by the substrate stiffness. Single-necking mode is the critical bifurcation mode for freestanding metal film, while

multiple-necking mode dominates for bilayers with complaint substrate of E/K = 0 . 02 , as demonstrated in Fig. 7 a–c. Fur-

ther increasing the substrate stiffness (to E/K = 1 . 05 ) raises the bifurcation limit curve to the theoretical upper bound for a

certain range of α and thus surface mode starts to set in. For example, in Fig. 7 a, when E/K = 1 . 05 surface mode occurs at

small straining ratio angle 45 ◦ ≤α ≤ 65.1 ◦. The surface mode becomes more prevailing as the substrate becomes stiffer. In

Fig. 7 a, when E/K = 2 , the occurrence of the surface mode is associated with straining ratio angle of 45 ◦ ≤α ≤ 107.5 ◦. As the

bifurcation limit of elastomer/metal bilayer is capped by the surface-mode limit of the metal film, bifurcation limit curves of

E /K = 1 . 05 and E /K = 2 partially coincide for 45 ◦ ≤α ≤ 65.1 ◦. Fig. 7 b and c shows similar feature: bifurcation limit curves of

E /K = 1 . 05 and E /K = 2 partially coincide for 45 ◦ ≤α ≤ 102.6 ◦ and 45 ◦ ≤α ≤ 112.5 ◦ for N = 0 . 1 and 0.5, respectively, because

of the fact that they reach the theoretical upper bound set by the surface-mode limit of metal film. 

The effect of substrate thickness and stiffness on the bifurcation retardation and bifurcation mode can be physically un-

derstood as follows. The elastomer substrate that follows a neo-Hookean constitutive law by itself does not suffer from

bifurcation instability, including single-necking mode, multiple-necking mode, and surface mode. So the elastomer substrate 

provides mechanical constraints to resist bifurcation-induced localized deformation in the metal film, and thus retards the

occurrence of bifurcation, carrying the metal film to deform uniformly to a large strain. For single-necking bifurcation mode,

the elongation of the metal film is accommodated by large local elongation of a single necking band. Such severe strain

localization is not favorable since the elastomer substrate tends to delocalize the deformation of the metal film. Compared

to the single-necking mode, multiple-necking mode is associated with necked regions that are less deformed, because the

overall elongation of the metal film is carried by an array of necking bands rather than a single one. As a result, in presence

of a thin and compliant substrate, multiple-necking mode overwhelms the single-necking mode. Moreover, if the elastomer

substrate is sufficiently stiff and/or thick, its mechanical constraint to the metal film can be sufficiently strong to com-

pletely suppress the formation of necking bands, making surface mode the bifurcation mode. As discussed above, surface

mode bifurcation only affects the metal surface layer and does not sense the existence of the elastomer substrate. There-

fore, surface-mode bifurcation limit cannot be further enhanced by tuning the substrate, no matter how thick and stiff the

substrate is. 

3.4. Bifurcation analysis of a metal film on a plastic substrate 

The necking limit of a plastic/metal bilayer depends on four parameters: the hardening indices of the metal N f and

N s , the thickness ratio H s / H f , and the stiffness ratio K s / K f . We first explore the influence of K s / K f on the bifurcation limit

by fixing other parameters. Fig. 8 a–c plots the critical X as a function of kH f , for the combination of N f = 0 . 1 , N s = 0 . 3 , and
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Fig. 8. Critical X is plotted as a function of kH f to show the effect of substrate stiffness on the bifurcation limit of plastic/metal bilayers, for three repre- 

sentative straining conditions (a) α = 45 ◦ , (b) α = 90 ◦ and (c) α = 116 . 6 ◦ . Thickness ratio is taken to be H s / H f = 1 . The grey dashed line and dotted line 

represent a freestanding film of N f = 0 . 1 and a freestanding substrate of N s = 0 . 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H s / H f = 1 . Similar to that in an elastomer-supported metal layer, lowest X (i.e., bifurcation limit) of a plastic-supported metal

film increases with increasing stiffness of the plastic substrate. Specifically, at equi-biaxial tension, Fig. 8 a shows bifurcation

limit equals to 0.372 (single-necking mode), and 0.437 (single-necking mode) for K s / K f = 1 , and K s / K f = 15 , respectively. At

plane-strain tension ( Fig. 8 b), bifurcation limit is 0.185 (single-necking mode), and 0.254 (surface mode) for K s / K f = 1 , and

K s / K f = 15 , respectively. At uniaxial tension ( Fig. 8 c), critical X takes value of 0.327 (single-necking mode), and 0.463 (single-

necking mode) for K s / K f = 1 , and K s / K f = 15 , respectively. For equi-biaxial tension and plane-strain tension, the necking

band always occurs in the direction perpendicular to x 3 direction that of the greater tensile strain ( � = 90 ◦). While under

uniaxial tension, the necking band appears in a slanted direction with � = 46 ◦ for both K s / K f = 1 , and K s / K f = 15 . 

Fig. 9 shows bifurcation limit curves with different stiffness ratios K s / K f = 0 , 1, 15. Bifurcation of plastic-supported metal

films shows similarity with that of elastomer-supported metal films in two folds: (1) Bifurcation retardation effect: Com-

parison among the curves in Fig. 9 shows that the bifurcation is retarded to occur at a higher strain in presence of the

plastic substrate. The effect of bifurcation retardation becomes more significant as K s / K f increases. (2) Necking band orien-

tation: Each bifurcation curve is divided into two segments by a black dot in Fig. 9 , with the right segment corresponding

to necking bands perpendicular to the x 3 direction and the left segment corresponding to inclined necking bands. 

Fig. 9 also reveals two distinctions between elastomer-supported metal films and plastic-supported metal films. (1) Bifur-

cation mode: It is important to note that one important distinction between elastomer-supported metal layers and plastic-

supported metal layers lays in the bifurcation mode: plastic-supported metal layers are much more prone to the single-

necking mode than elastomer-supported metal layers. For example, in Fig. 9 a, plastic/metal bilayers (of K s / K f = 1 and 15)

experience single-necking mode at any straining ratio angle α. It can be attributed to the fact that constraint on necking for-

mation from plastic substrates (characterized by the power-law plasticity) is not as strong as that from elastomer substrates.

(2) Theoretical upper bound of bifurcation limit of the bilayer: As discussed above, the upper bound of bifurcation limit of

an elastomer-supported metal film is determined by the surface-mode bifurcation limit of the metal film. In contrast, for

plastic-supported metal film, because the plastic substrate is also vulnerable to necking formation when subjected to ten-

sion, bifurcation limit of plastic-supported metal film is not only constrained by the surface-mode limit of the metal film,

but it is also limited by the single-necking limit of the freestanding plastic substrate itself. Competition between surface-

mode limit of the metal film and single-necking limit of a freestanding plastic substrate determines the upper bound of the

bifurcation limit: the one reached by the radial proportional straining path first sets the upper bound at α. In Fig. 9 a with

N s = 0 . 2 and N f = 0 . 1 . The limiting case of K s / K f = ∞ corresponds to single-necking limit curve of a freestanding plastic

substrate (purple dotted line), whose bifurcation limit strains ɛ 3 are 0.308 (uniaxial), 0.2 (plane-strain), and 0.266 (equi-

biaxial), respectively. Note that for the surface-mode limit curve of metal film with N f = 0 . 1 ( Fig. 2 and grey dotted line

in Fig. 9 a), the surface-mode bifurcation limit strains ɛ are 0.446 (uniaxial), 0.252 (plane-strain), and 0.339 (equi-biaxial).
3 
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Fig. 9. Bifurcation limit plot of plastic-supported metal layers with various stiffness ratio K s / K f . Hardening index of the film is N f = 0 . 1 . Hardening index 

of the metal layer N s is (a) 0.2, (b) 0.3 and (c) 0.5, respectively. H s / H f = 1 is used in making the plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The single-necking bifurcation limit of the plastic substrate with N s = 0 . 2 is lower than the surface-mode limit of the metal

film for all range of 45 ◦ ≤α ≤ 116.6 ◦. In this case, the effect of the plastic substrate on necking retardation is capped by the

single-necking bifurcation limit of the substrate itself. As exemplified in Fig. 9 a, bifurcation limit curve of K s / K f = 15 is very

close to but cannot be higher than the single-necking limit curve of the plastic substrate (purple dotted line in Fig. 9 a).

Fig. 9 b shows bifurcation limit curves for the combination of N s = 0 . 3 and N f = 0 . 1 . Note that the single-necking limit curve

of the freestanding plastic substrate with N s = 0 . 3 (purple dotted line) and the surface-mode limit curve of the metal film

with N f = 0 . 1 (grey dotted line) intersect. For a given α, the lower value of the two curves gives the theoretical upper

bound of bifurcation limit of plastic-supported metal layer. The determined upper bound curve consists of three segments:

one segment on the surface-mode limit curve of the metal layer at 65.1 ◦ ≤α ≤ 103 ◦ and two segments on the single-necking

bifurcation limit curve of the substrate at 45 ◦ ≤α < 65.1 ◦ and 103 ◦ < α ≤ 116.6 ◦. Fig. 9 b demonstrates that stiff substrate with

K s / K f = 15 is sufficiently strong to increase the bifurcation limit to the upper bound at straining angle of 67.6 ◦ ≤α ≤ 102.6 ◦.

Fig. 9 c plots bifurcation limit curves for N s = 0 . 5 and N f = 0 . 1 . In this case, the surface-mode limit of the metal layer of

N f = 0 . 1 is always lower than the single-necking limit of the substrate of N s = 0 . 5 , and thus specifies the upper bound for

bifurcation limit curve. The plastic substrate with N s = 0 . 5 and K s / K f = 15 is strong enough to raise the bifurcation limit of

plastic-supported metal layer to the upper bound, the surface-mode limit of the metal film, as indicated in Fig. 9 . 

We next study the influence of substrate thickness H s / H f on the bifurcation limit of plastic/metal bilayers. For the three

representative straining conditions, critical X as a function of kH f is plotted in Fig. 10 a (equi-biaxial), 10b (plane-strain)

and 10c (uniaxial), with N f = 0 . 1 , N s = 0 . 3 , and K s / K f = 1 . Similar to the effect of substrate stiffness, increasing substrate

thickness not only retards the bifurcation to occur at a higher X , but it also affects the bifurcation modes and necking band

orientation. At equi-biaxial tension, Fig. 10 a shows critical X equals to 0.372 (single-necking mode), and 0.44 (single-necking

mode) for H s / H f = 1 , and H s / H f = 20 , respectively. The corresponding necking bands are perpendicular to ɛ 3 direction ( � =
90 ◦). At plane-strain tension ( Fig. 10 b), critical X is 0.185 (single-necking mode), and 0.255 (surface mode) for H s / H f = 1 ,

and H s / H f = 20 , respectively. The corresponding necking bands also occur in the direction perpendicular to ɛ 3 ( � = 90 ◦).

At uniaxial tension ( Fig. 10 c), critical X takes value of 0.327 (single-necking mode), and 0.467 (single-necking mode) for

H s / H f = 1 , and H s / H f = 20 , respectively. The necking band appear in a slanted direction with � = 52 ◦ and � = 50 ◦ for both

H s / H f = 1 , and H s / H f = 20 . 

Fig. 11 shows bifurcation limit curves with different thickness ratios H s / H f = 1 or 20. The effect of the substrate thickness

on the bifurcation limit of the bilayer is similar to that of the substrate stiffness: the larger the substrate thickness, the

higher the bifurcation limit of the plastic/metal bilayer. No matter how stiff the substrate is, the bifurcation limit of the
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Fig. 10. Critical X is plotted as a function of kH f to show the effect of substrate thickness on the bifurcation limit of plastic/metal bilayers, for three 

representative straining conditions (a) α = 45 ◦ , (b) α = 90 ◦ and (c) α = 116 . 6 ◦ . The stiffness ratio K s / K f = 1. The grey dashed line represents single-necking 

limit of a freestanding film of N f = 0 . 1 and the grey dotted line is the single-necking limit curve of a freestanding substrate of N s = 0 . 3 . 

Fig. 11. Bifurcation limit plot of plastic-supported metal layer with various thickness ratio H s / H f . Hardening index of the metal film is N f = 0 . 1 . Hardening 

index of the plastic substrate N s is (a) 0.2, (b) 0.3 and (c) 0.5. Here, K s / K f = 1 . 
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plastic/metal bilayer is capped by the upper bound determined by the competition between the surface-mode limit of the

metal film and the single-necking limit of the freestanding plastic substrate. For the thickness ratio of H s / H f = 20 , the

bifurcation limit of the plastic/metal bilayer is very close to the theoretical upper bound. It implies that further increasing

the substrate thickness cannot substantially enhance the bifurcation limit of the plastic/metal bilayer but only increases the

weight of the structure, which offers a guideline for designing plastic/metal bilayer with both large bifurcation limit and

low weight. 

4. Conclusions and remarks 

An all-wavelength bifurcation analysis is conducted to understand the onset of bifurcation instability of substrate-

supported metal layers under biaxial in-plane loading over the range of straining ratio angle from α = 45 ◦ (equi-biaxial),

to 90 ◦ (plane-strain), and to 116.6 ◦ (uniaxial). Major findings of the present study are recapped as follows: 

• Bifurcation modes : Three different bifurcation modes are defined based on the value of wavenumber k corresponding

to the bifurcation limit: single-necking mode (long wavelength limit k → 0, a single diffusive neck occurs), multiple-

necking mode (an intermediate wavelength k > 0, multiple necks appear upon the onset of bifurcation), and the surface

mode (short wavelength limit k → ∞ , the metal surface becomes wavy). The occurrence of single-necking mode and

multiple-necking mode can be retarded by attaching the metal film to an elastomer or a plastic substrate, while surface-

mode limit is insensitive to the existence of a substrate. Single-necking mode occurs in a freestanding metal film or a

metal film attached to a thin/compliant plastic substrate. Multiple-necking mode prevails in a metal film supported by a

moderately thick/stiff plastic substrate or a thin/complaint elastomer substrate. Surface mode becomes dominating when 

the substrate becomes sufficiently thick or stiff. 

• Bifurcation retardation effect : The bifurcation limit strain of a metal layer supported by an elastomer or a plastic substrate

is higher than that of the counterpart freestanding metal layer, for any biaxial in-plane loading explored. The retarded

bifurcation in substrate-supported metal layers essentially results from the mechanical constraint of the substrate to

the metal layer deformation. (1) The bifurcation limit of an elastomer/metal bilayer depends on four parameters: the

straining angle α, the hardening index of the metal film N f , the thickness ratio H s / H f , and the stiffness ratio E / K . The

larger H s / H f and E / K , the more significant necking retardation. The surface-mode limit of the metal film sets the upper

bound of the retarded bifurcation limit of the elastomer/metal bilayer. (2) The bifurcation limit of a plastic/metal bilayer

depends on five parameters: the straining angle α, the hardening indices of the metal film N f and of the substrate N s ,

the thickness ratio H s / H f , and the stiffness ratio K s / K f . A thicker or stiffer substrate leads to a higher bifurcation limit of

an elastomer/metal bilayer. The bifurcation limit of an elastomer/metal bilayer is capped by both the surface-mode limit

of the metal film and the single-necking limit of the freestanding plastic substrate. 

• Necking band orientation : For a straining angle of 45 ◦ ≤α ≤ 90 ◦, the necking bands in substrate-supported metal layers, if

occurs, are always along the direction perpendicular to that of the greater tensile strain ɛ 3 , with � = 90 ◦. For a straining

angle of 90 ◦ ≤α ≤ 116.6 ◦, the necking bands could appear in a slanted direction with �< 90 ◦. The smallest � occurs

under uniaxial tension ( α = 116 . 6 ◦). The predicted inclination angle from bifurcation analysis agrees well with the orien-

tation of the necking bands measured in uniaxial tension experiments of substrate-supported metal layers. 

We conclude by first highlighting the difference between the present study and our previous work ( Jia and Li, 2013 ).

The necking limit analysis in the previous paper is based on the assumption that occurrence of a single neck is prevail-

ing in both freestanding metal films and substrate-supported metal films, such that a single diffusive neck is introduced

accordingly as the perturbation mode. Consequently, the previous model is inadequate to precisely predict the formation

of multiple necks which has been observed experimentally in substrate-supported metal films ( Xiang et al., 2005 ). Instead

of adopting a presumed single-necking mode, our current work extends the previous effort by introducing a generalized

two-dimensional sinusoidal perturbation mode, through which occurrence of necking bands with any wavelength can be

investigated. Prediction on bifurcation modes and bifurcation limits from the present study is more precise and realistic. 

In the present analysis, the substrate-metal interface is assumed to be perfectly bonded without any interfacial delami-

nation. In reality, interfacial debonding may occur in the substrate-metal bilayer when subjected to severe in-plane loading.

With interfacial delamination, the debonded portion of the metal layer loses mechanical constraint from the substrate and

thus is subject to necking formation more easily. Consequently, results presented in this theoretical work assuming per-

fect interfacial bonding may overestimate the bifurcation limit if interfacial debonding sets in. It is shown both numerically

and experimentally that development of necking bands and interfacial delamination facilitates each other and co-evolve ( Li

et al., 2005; Li and Suo, 2007; Lu et al., 2007 ). The interfacial compliance plays a role in the deformation bifurcation of

a substrate-supported metal layer ( Bigoni et al., 1997 ). The understanding of the abovementioned effects is important but

beyond the scope of this paper and we will report further studies in these regards elsewhere. 

Emerging from the above findings is a structural design strategy to enhance the stretchability of metal films, that is,

by well bonding a metal layer onto the surface of a substrate. We show that a moderately thick and stiff substrate can

offer effective mechanical constraint to significantly increase the bifurcation limit. The results from this study can provide

quantitative guidance for the material selection and structural optimization of the metal electrodes and current collectors

in flexible batteries and devices. For example, we speculate that adhering lithium metal electrodes to a stretchable and
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electronically-conductive substrate, such as ionic hydrogels or interpenetrating conductive polymers, may significantly en-

hance the performance of flexible batteries based on Li-metal technologies. We also call for further experimental studies to

demonstrate design guidelines provided by the current theoretical studies. 
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Appendix 

A1. Instantaneous moduli L ijkl for a metal layer 

The explicit form of the instantaneous moduli L ijkl for a metal layer of power-law plasticity σ = K ε N is summarized

below: 

L 1111 = 

4 

9 

E s − ( E s − E t ) 
1 + sin 2 α

3 

(
1 + 

1 
2 

sin 2 α
) (A1-1)

L 2222 = 

4 

9 

E s − ( E s − E t ) 
cos 2 α

3 

(
1 + 

1 
2 

sin 2 α
) (A1-2)

L 3333 = 

4 

9 

E s − ( E s − E t ) 
sin 

2 α

3 

(
1 + 

1 
2 

sin 2 α
) (A1-3)

L 1122 = L 2211 = −2 

9 

E s + ( E s − E t ) 
cos 2 α + 

1 
2 

sin 2 α

3 

(
1 + 

1 
2 

sin 2 α
) (A1-4)

L 1133 = L 3311 = −2 

9 

E s + ( E s − E t ) 
sin 

2 α + 

1 
2 

sin 2 α

3 

(
1 + 

1 
2 

sin 2 α
) (A1-5)

L 2233 = L 3322 = −2 

9 

E s + ( E s − E t ) 
1 
2 

sin 2 α

3 

(
1 + 

1 
2 

sin 2 α
) (A1-6)

L 1212 = L 1221 = L 2112 = L 2121 = 

E s X 

3 

( −2 cos α − sin α) coth ( −2 X cos α − X sinα) (A1-7)

L 1313 = L 1331 = L 3113 = L 3131 = 

E s X 

3 

( − cos α − 2 sin α) coth ( −X cos α − 2 X sinα) (A1-8)

L 2323 = L 2332 = L 3223 = L 3232 = 

E s X 

3 

( cos α − sin α) coth ( X cos α − X sinα) (A1-9)

By substituting Eqs. (8.1 )–( 8.2 ) into explicit form of L ijkl , i.e. Eqs. (A1-1) –(A1-9) , we have 

L 1111 = 

[ 

4 

9 

− ( 1 − N ) 
1 + sin 2 α

3 

(
1 + 

1 
2 

sin 2 α
)
] 

K 

( 

2 √ 

3 

X 

√ 

1 + 

1 

2 

sin 2 α

) N−1 

(A1-10)

L 2222 = 

[ 

4 

9 

− ( 1 − N ) 
cos 2 α

3 

(
1 + 

1 
2 

sin 2 α
)
] 

K 

( 

2 √ 

3 

X 

√ 

1 + 

1 

2 

sin 2 α

) N−1 

(A1-11)
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L 3333 = 

[ 
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− ( 1 − N ) 
sin 

2 α
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sin 2 α
)
] 
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√ 
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sin 2 α
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(A1-12) 

L 1122 = L 2211 = 

[ 

−2 

9 

+ ( 1 − N ) 
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1 
2 

sin 2 α
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(
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sin 2 α
)

] 
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(A1-13) 

L 1133 = L 3311 = 

[ 
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sin 
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sin 2 α
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sin 2 α
)
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sin 2 α
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(A1-14) 

L 2233 = L 3322 = 

[ 

−2 
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− ( 1 − N ) 
1 
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sin 2 α

3 

(
1 + 

1 
2 

sin 2 α
)
] 

K 

( 

2 √ 

3 
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1 + 
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sin 2 α

) N−1 

(A1-15) 

L 1212 = L 1221 = L 2112 = L 2121 = 

1 

3 

K X 

N 

( 

2 √ 

3 

√ 

1 + 

1 

2 

sin 2 α

) N−1 

( −2 cos α − sin α) coth ( −2 X cos α − X sin α) 

(A1-16) 

L 1313 = L 1331 = L 3113 = L 3131 = 

1 

3 

K X 

N 

( 

2 √ 

3 

√ 

1 + 

1 

2 

sin 2 α

) N−1 

( − cos α − 2 sin α) coth ( −X cos α − 2 X sin α) 

(A1-17) 

L 2323 = L 2332 = L 3223 = L 3232 = 

1 

3 

K X 

N 

( 

2 √ 

3 

√ 

1 + 

1 

2 

sin 2 α

) N−1 

( cos α − sin α) coth ( X cos α − X sin α) (A1-18) 

All other components of L ijkl for the metal layer vanish. The components L ijkl depend on X explicitly. 

A2. Instantaneous moduli L ijkl for an elastomer layer 

All non-trivial components of instantaneous moduli L ijkl of a neo-Hookean elastomer layer are explicitly summarized

below 

L 1111 = 

4 

9 

Eλ2 
1 (A2-1) 

L 2222 = 

4 

9 

Eλ2 
2 (A2-2) 

L 3333 = 

4 

9 

Eλ2 
3 (A2-3) 

L 1122 = L 3322 = −2 

9 

Eλ2 
2 (A2-4) 

L 1133 = L 2233 = −2 

9 

Eλ2 
3 (A2-5) 

L 2211 = L 3311 = −2 

9 

Eλ2 
1 (A2-6) 

L 1212 = L 1221 = L 2112 = L 2121 = 

E 

6 

(
λ2 

1 + λ2 
2 

)
(A2-7) 

L 2323 = L 2332 = L 3223 = L 3232 = 

E 

6 

(
λ2 

2 + λ2 
3 

)
(A2-8) 

L 1313 = L 1331 = L 3113 = L 3131 = 

E 

6 

(
λ2 

1 + λ2 
3 

)
(A2-9) 

The components L ijkl for elastomer layers also depend on X explicitly. 
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A3. Derivation of Eq. (11) and expressions for coefficients c ijkl 

Any perturbation in the velocity field v ( x 1 , x 2 , x 3 ) induces a small increment in the asymmetric nominal stress tensor.

The increment of nominal stress field is in equilibrium and the velocity field is incompressible: 

˙ t i j,i = 0 (A3-1)

v i,i = 0 (A3-2)

where t ij is the nominal stress. The relation between the Jaumann rate of Cauchy stress and the nominal stress rate is 

˙ t i j = σ̄i j + 

1 

2 

σik v j,k −
1 

2 

σik v k, j −
1 

2 

σ jk v i,k −
1 

2 

σ jk v k,i (A3-3)

Considering the fact that σ ij is homogeneous in the structure, then 

˙ t i j,i = 0 can be rewritten as 

c i jkl v l,ki + p , j = 0 ( j = 1 , 3 ) (A3-4)

The coefficient c ijkl is given as 

c i jkl = L i jkl + 

1 

2 

σik δl j −
1 

2 

σil δk j −
1 

2 

σ jk δil −
1 

2 

σ jl δki (A3-5)

Explicit expressions of c ijkl for both the power-law material and the neo-Hookean elastomer are listed below 

c 1111 = L 1111 − σ11 = L 1111 (A3-6)

c 1122 = L 1122 (A3-7)

c 1133 = L 1133 (A3-8)

c 2112 = L 2112 − 1 

2 

( σ22 + σ11 ) (A3-9)

c 2121 = L 2121 + 

1 

2 

( σ22 − σ11 ) (A3-10)

c 3113 = L 3113 − 1 

2 

( σ33 + σ11 ) (A3-11)

c 3131 = L 3131 + 

1 

2 

( σ33 − σ11 ) (A3-12)

c 1212 = L 1212 + 

1 

2 

( σ11 − σ22 ) (A3-13)

c 1221 = L 1221 − 1 

2 

( σ11 + σ22 ) (A3-14)

c 2211 = L 2211 (A3-15)

c 2233 = L 2233 (A3-16)

c 2222 = L 2222 − σ22 (A3-17)

c 3232 = L 3232 + 

1 

2 

( σ33 − σ22 ) (A3-18)

c 3223 = L 3223 − 1 

2 

( σ33 + σ22 ) (A3-19)

c 1313 = L 1313 + 

1 

2 

( σ11 − σ33 ) (A3-20)
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c 1331 = L 1331 − 1 

2 

( σ11 + σ33 ) (A3-21) 

c 2323 = L 2323 + 

1 

2 

( σ22 − σ33 ) (A3-22) 

c 2332 = L 2332 − 1 

2 

( σ22 + σ33 ) (A3-23) 

c 3311 = L 3311 (A3-24) 

c 3322 = L 3322 (A3-25) 

c 3333 = L 3333 − σ33 (A3-26) 

The above expressions for c ijkl hold for both the metal and elastomer layers. Also note that the coefficient c ijkl depends

only on the straining history X . 

A4. Expressions of M ij 

Components of the Matrix M are given below 

M 11 = k 2 
(
c 1111 z 

2 − c 2121 cos 2 � − c 3131 sin 

2 �
)

(A4-1) 

M 12 = −M 21 = z k 2 cos �( c 1122 + c 2112 ) (A4-2) 

M 13 = −M 31 = z k 2 sin �( c 1133 + c 3113 ) (A4-3) 

M 14 = M 41 = zk (A4-4) 

M 22 = k 2 
(
c 1212 z 

2 − c 2222 cos 2 � − c 3232 sin 

2 �
)

(A4-5) 

M 23 = −M 32 = −k 2 cos � sin �( c 2233 + c 3223 ) (A4-6) 

M 24 = −M 42 = −k cos � (A4-7) 

M 33 = k 2 
(
c 1313 z 

2 − c 2323 cos 2 � − c 3333 sin 

2 �
)

(A4-8) 

M 34 = −M 43 = −k sin � (A4-9) 

M 44 = 0 (A4-10) 

A5. C ji ( i, j = 1 , 6 ) for a freestanding metal film of thickness h 

Without losing generality, we set x 1 = 0 at the top surface and x 1 = −h at the bottom surface of the freestanding metal

film. 

C 1 i = c 1111 Re 
[
z i k A 1 ( i ) 

]
+ c 1122 Re 

[
k A 2 ( i ) 

]
cos � + c 1133 Re 

[
k A 3 ( i ) 

]
sin � + Re 

[
A 4 ( i ) 

]
(A5-1) 

C 2 i = −c 1221 Re 
[
k A 1 ( i ) 

]
cos � + c 1212 Re 

[
z i k A 2 ( i ) 

]
(A5-2) 

C 3 i = −c 1331 Re 
[
k A 1 ( i ) 

]
sin � + c 1313 Re 

[
z i k A 3 ( i ) 

]
(A5-3) 

C 4 i = c 1111 Re 
[
z i k A 1 ( i ) e 

−z i kh 
]

+ c 1122 Re 
[
k A 2 ( i ) e 

−z i kh 
]

cos � + c 1133 Re 
[
k A 3 ( i ) e 

−z i kh 
]

sin � + Re 
[
A 4 ( i ) e 

−z i kh 
]

(A5-4) 

C 5 i = −c 1221 Re 
[
k A 1 ( i ) e 

−z i kh 
]

cos � + c 1212 Re 
[
z i k A 2 ( i ) e 

−z i kh 
]

(A5-5) 

[ −z i kh 
] [ −z i kh 

]

C 6 i = −c 1331 Re k A 1 ( i ) e sin � + c 1313 Re z i k A 3 ( i ) e (A5-6) 
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A6. C ji ( i, j = 1 , 3 ) for a semi-infinite metal layer 

Without losing generality, we assume the semi-infinite metal layer sits in the half space of x 1 ≤ 0, with x 1 = 0 being the

top surface. 

C 1 i = c 1111 Re 
[
z i k A 1 ( i ) 

]
+ c 1122 Re 

[
k A 2 ( i ) 

]
cos � + c 1133 Re 

[
k A 3 ( i ) 

]
sin � + Re 

[
A 4 ( i ) 

]
(A6-1)

C 2 i = −c 1221 Re 
[
k A 1 ( i ) 

]
cos � + c 1212 Re 

[
z i k A 2 ( i ) 

]
(A6-2)

C 3 i = −c 1331 Re 
[
k A 1 ( i ) 

]
sin � + c 1313 Re 

[
z i k A 3 ( i ) 

]
(A6-3)

A7. H ij for a substrate/metal bilayer 

We set x 1 = 0 at the interface, x 1 = −H at the bottom surface of the substrate and x 1 = h at the top surface of the film.

Note that, in the main text, the thickness of the substrate and the film is denoted by H s and H f , respectively. The Matrix H

can be written as 

H = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

H 1 , 1 H 1 , 2 H 1 , 3 H 1 , 4 H 1 , 5 H 1 , 6 0 0 0 0 0 0 

H 2 , 1 H 2 , 2 H 2 , 3 H 2 , 4 H 2 , 5 H 2 , 6 0 0 0 0 0 0 

H 3 , 1 H 3 , 2 H 3 , 3 H 3 , 4 H 3 , 5 H 3 , 6 0 0 0 0 0 0 

H 4 , 1 H 4 , 2 H 4 , 3 H 4 , 4 H 4 , 5 H 4 , 6 H 4 , 7 H 4 , 8 H 4 , 9 H 4 , 10 H 4 , 11 H 4 , 12 

H 5 , 1 H 5 , 2 H 5 , 3 H 5 , 4 H 5 , 5 H 5 , 6 H 5 , 7 H 5 , 8 H 5 , 9 H 5 , 10 H 5 , 11 H 5 , 12 

H 6 , 1 H 6 , 2 H 6 , 3 H 6 , 4 H 6 , 5 H 6 , 6 H 6 , 7 H 6 , 8 H 6 , 9 H 6 , 10 H 6 , 11 H 6 , 12 

H 7 , 1 H 7 , 2 H 7 , 3 H 7 , 4 H 7 , 5 H 7 , 6 H 7 , 7 H 7 , 8 H 7 , 9 H 7 , 10 H 7 , 11 H 7 , 12 

H 8 , 1 H 8 , 2 H 8 , 3 H 8 , 4 H 8 , 5 H 8 , 6 H 8 , 7 H 8 , 8 H 8 , 9 H 8 , 10 H 8 , 11 H 8 , 12 

H 9 , 1 H 9 , 2 H 9 , 3 H 9 , 4 H 9 , 5 H 9 , 6 H 9 , 7 H 9 , 8 H 9 , 9 H 9 , 10 H 9 , 11 H 9 , 12 

0 0 0 0 0 0 H 10 , 7 H 10 , 8 H 10 , 9 H 10 , 10 H 10 , 11 H 10 , 12 

0 0 0 0 0 0 H 11 , 7 H 11 , 8 H 11 , 9 H 11 , 10 H 11 , 11 H 11 , 12 

0 0 0 0 0 0 H 12 , 7 H 12 , 8 H 12 , 9 H 12 , 10 H 12 , 11 H 12 , 12 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A7-1)

H 1 ,i = c 1111 Re 
[
z i kA 

+ 
1 ( i ) 

e z i kh 
]

+ c 1122 Re 
[
kA 

+ 
2 ( i ) 

e z i kh 
]

cos � + c 1133 Re 
[
kA 

+ 
3 ( i ) 

e z i kh 
]

sin � + Re 
[
A 

+ 
4 ( i ) 

e z i kh 
]

( i = 1 , 6 ) (A7-2)

H 2 ,i = −c 1221 Re 
[
kA 

+ 
1 ( i ) 

e z i kh 
]

cos � + c 1212 Re 
[
z i kA 

+ 
2 ( i ) 

e z i kh 
]
( i = 1 , 6 ) (A7-3)

H 3 ,i = −c 1331 Re 
[
kA 

+ 
1 ( i ) 

e z i kh 
]

sin � + c 1313 Re 
[
z i kA 

+ 
3 ( i ) 

e z i kh 
]
( i = 1 , 6 ) (A7-4)

H 4 ,i = Re 
[
A 

+ 
1 ( i ) 

]
( i = 1 , 6 ) H 4 ,i = −Re 

[
A 

−
1 ( i −6 ) 

]
( i = 7 , 12 ) (A7-5)

H 5 ,i = Re 
[
A 

+ 
2 ( i ) 

]
( i = 1 , 6 ) H 5 ,i = −Re 

[
A 

−
2 ( i −6 ) 

]
( i = 7 , 12 ) (A7-6)

H 6 ,i = Re 
[
A 

+ 
3 ( i ) 

]
( i = 1 , 6 ) H 6 ,i = −Re 

[
A 

−
3 ( i −6 ) 

]
( i = 7 , 12 ) (A7-7)

H 7 ,i = c 1111 Re 
[
z i kA 

+ 
1 ( i ) 

]
+ c 1122 Re 

[
kA 

+ 
2 ( i ) 

]
cos � + c 1133 Re 

[
kA 

+ 
3 ( i ) 

]
sin � + Re 

[
A 

+ 
4 ( i ) 

]
( i = 1 , 6 ) (A7-8)

H 7 ,i = −c 1111 Re 
[
z i kA 

−
1 ( i −6 ) 

]
− c 1122 Re 

[
kA 

−
2 ( i −6 ) 

]
cos � − c 1133 Re 

[
kA 

−
3 ( i −6 ) 

]
sin � − Re 

[
A 

−
4 ( i −6 ) 

]
( i = 7 , 12 ) (A7-9)

H 8 ,i = −c 1221 Re 
[
kA 

+ 
1 ( i ) 

]
cos � + c 1212 Re 

[
z i kA 

+ 
2 ( i ) 

]
( i = 1 , 6 ) (A7-10)

H 8 ,i = c 1221 Re 
[
kA 

−
1 ( i −6 ) 

]
cos � − c 1212 Re 

[
z i kA 

−
2 ( i −6 ) 

]
( i = 7 , 12 ) (A7-11)

H 9 ,i = −c 1331 Re 
[
kA 

+ 
1 ( i ) 

]
sin � + c 1313 Re 

[
z i kA 

+ 
3 ( i ) 

]
( i = 1 , 6 ) (A7-12)

H 9 ,i = c 1331 Re 
[
kA 

−
1 ( i −6 ) 

]
sin � − c 1313 Re 

[
z i kA 

−
3 ( i −6 ) 

]
( i = 7 , 12 ) (A7-13)
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H 10 ,i = c 1111 Re 
[
z i kA 

−
1 ( i −6 ) 

e −z i kH 
]

+ c 1122 Re 
[
kA 

−
2 ( i −6 ) 

e −z i kH 
]

cos � + c 1133 Re 
[
kA 

−
3 ( i −6 ) 

e −z i kH 
]

sin � + Re 
[
A 

−
4 ( i −6 ) 

e −z i kH 
]
( i = 7 , 12 ) 

(A7-14) 

H 11 ,i = −c 1221 Re 
[
kA 

−
1 ( i −6 ) 

e −z i kH 
]

cos � + c 1212 Re 
[
z i kA 

−
2 ( i −6 ) 

e −z i kH 
]
( i = 7 , 12 ) (A7-15) 

H 12 , i = −c 1331 Re 
[
kA 

−
1(i −6) 

e −z i kH 
]

sin � + c 1313 Re 
[
z i kA 

−
3(i −6) 

e −z i kH 
]
( i = 7 , 12 ) (A7-16) 
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