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A B S T R A C T   

Soft materials can undergo various deformation instabilities, including wrinkling, creasing, and 
necking. Most existing studies of such instabilities of soft materials consider instant instability, 
which occurs instantaneously when the applied load exceeds a threshold level. Herein, we un-
cover the delayed tensile instability of hydrogels, a largely unstudied instability mode for soft 
materials. As the name suggests, when subject to a certain level of tensile load, a hydrogel may 
remain stable initially, and then suddenly become unstable after a delay in time. We find the 
delayed instability mode of hydrogels of various shapes, including the necking of stretched 
double-network hydrogel bars, the burst of pressurized spherical balloons, and the bulging of 
inflated cylindrical tubes. We reveal that tension-induced water absorption of hydrogels is the key 
mechanism underpinning the delayed tensile instabilities. The results from this study shed light 
on new guidelines in designing hydrogels to mitigate or harness deformation instabilities.   

1. Introduction 

The instability of soft materials and structures has long been a focal topic of the mechanics and physics of solids. A variety of 
instabilities – such as wrinkling (Huang, 2005; Li et al., 2011), ridging (Zang et al., 2012), buckling (Chen and Jin, 2020; Jawed et al., 
2015; Mullin et al., 2007; Rafsanjani and Bertoldi, 2017; Yin et al., 2008), creasing (Cai et al., 2012; Chen et al., 2012; Jin and Suo, 
2015; Liu et al., 2019), cratering (Wang et al., 2011), cavitation (Fu et al., 2020), and Rayleigh-Taylor instability (Zheng et al., 2019) – 
can be triggered when soft bodies are subjected to mechanical loadings or electric fields. While most instabilities arise under 
compressive forces, structures and materials may also become unstable under tensile stresses – the phenomenon is widely referred to as 
tensile instability. For example, when inflating a rubber balloon, the wall of the balloon is stretched by the internal-pressure-induced 
biaxial tensile stresses. Once the internal pressure reaches a critical value, the balloon expands in volume suddenly and unboundedly, 
often leading to the burst of the balloon (Cheng et al., 2019; Overvelde et al., 2015). Similarly, in an inflated cylindrical rubber tube 
subjected to internal pressure, localized bulging of one section of the tube can occur as a critical pressure level is approached (Fu et al., 
2016; Ye et al., 2020). Similar instability in a blood vessel attributes to the formation of aneurysm (Bogen and McMahon, 1979). In 
addition, Na et al. experimentally observe the initiation and propagation of necking instability in double-network hydrogels (DN gels) 
during uniaxial-tension tests (Na et al., 2006). 

Notably, most above-mentioned research on instabilities assumes a closed system in thermodynamics, such as hyperelastic rubbers 
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or hydrogels that deform over a short time scale, so that the materials do not exchange any matter with their surroundings. Recently, 
hydrogels have been employed in diverse applications, including medical implants (Yang et al., 2021), drug delivery (Li and Mooney, 
2016), tissue engineering (Yuk et al., 2019), and stimuli-sensitive actuators (Han et al., 2020). For these applications, the assumption 
of closed systems in thermodynamics is no longer valid: hydrogels are constantly in contact with water and subject to mechanical loads 
for an extended duration of time, allowing the transport of water molecules in and out of the gel. Such mass transport is intrinsically 
coupled with the deformation of the hydrogels and can significantly affect the mechanical response of hydrogels. For instance, Tang 
et al. reveal that, when a chemically crosslinked hydrogel containing a pre-cut crack is stretched and held at a constant strain level, the 
crack remains stationary in the beginning and then suddenly grows significantly after a time of delay (Tang et al., 2017). This phe-
nomenon has been termed the delayed fracture by Wang and Hong, which is attributed to the diffusion and redistribution of water 
molecules driven by the crack-tip stress field (Wang and Hong, 2012). Since fracture and instability are both triggered by critical 
mechanical loads exceeding a threshold, a natural question to ask is whether new instability modes exist in open-system hydrogels – 
which are under mechanical loads and can exchange water molecules with the surroundings. 

In this study, we uncover a new instability mode of hydrogels – the delayed tensile instability. We use the necking formation of DN 
gels as an example to illustrate the concept of delayed tensile instability [Fig. 1(a)]. Under a monotonic load that rapidly increases at a 
constant rate, the hydrogel elongates uniformly in the beginning, and then necking suddenly forms when the load reaches a critical 
level. Such instability under a monotonic load is called instant instability and the load at which instant instability occurs is called the 
threshold for instant instability. The aforementioned necking instability of DN gels (Na et al., 2006), as well as the burst of pressurized 
rubber balloons and the bulging of inflated soft tubes (Fu et al., 2016; Overvelde et al., 2015), all fall into the category of instant 
instability. Under static load, where a load is rapidly applied and then held at a constant level slightly lower than the threshold for 
instant instability, the hydrogel remains stable for a span of time, and then develops necking instability suddenly after a delay in time. 
When the static load is at a level way below the threshold for instant instability, the DN gel remains stable all the time, not susceptible 
to either instant or delayed instability. We define the instability under static load as delayed instability, and call the load above which 
delayed instability occurs the threshold for delayed instability. We further demonstrate that tensile stress state is a necessary condition 
for triggering delayed necking of DN gels, thus delayed instability of hydrogels should be called delayed tensile instability in a precise 

Fig. 1. Schematics of three representative delayed tensile instabilities of hydrogel structures. (a) Delayed necking of a stretched double-network 
hydrogel bar. The hydrogel is under uniaxial tension. (b) Delayed burst of an inflated spherical hydrogel balloon. The wall of the balloon is sub-
jected to equi-biaxial tension induced by the internal pressure p. (c) Delayed bulging of a pressurized cylindrical tube. The wall of the tube is 
stretched by biaxial tension. p and F represent the internal pressure and the weight hanging at the end of the tube, respectively. 
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manner. In addition, delayed tensile instability also occurs in pressurized hydrogel balloons [Fig. 1(b)] and inflated cylindrical 
hydrogel tubes [Fig. 1(c)] that are in contact with water. We expect that most tensile instabilities of hydrogels have a delayed 
instability mode. 

The rest of this paper is organized as follows. In section 2, we derive the free energy function of the DN gel, taking the change of 
water concentration inside the gel into consideration. Three instability/deformation modes are demonstrated for DN gels under 
uniaxial tension, including instant necking, delayed necking, and equilibrium swelling without necking. In Section 3, we reveal that an 
inflated spherical hydrogel balloon, the wall of which is under equi-biaxial tension, may also be subject to delayed tensile instability – 
the delayed burst caused by postponed snap-through instability of the balloon. In Section 4, we further reveal that delayed tensile 
instability – delayed bulging – may occur in a pressurized cylindrical tube, the wall of which is biaxially stretched. In Section 5, the 
universality of the delayed tensile instability is discussed. Section 6 summarizes the main findings of the paper. 

2. Delayed necking of stretched double-network hydrogels 

2.1. Deformation, swelling, and damage of DN gels 

A DN gel is an aggregate of water molecules and two interpenetrating polymer networks with distinct chain lengths – a long-chain 
network (network L) and a short-chain network (network S) (Na et al., 2006). The two networks are interlaced on a molecular scale but 
not covalently bonded to each other (Zhao, 2012). The necking instability of DN gels is a consequence of the deformation-induced 
stiffening of the long-chain network and the damage-induced softening of the short-chain network. 

When considering the deformation of the two polymer networks, we assume polymer chains of one network are stretched iso-
tropically and homogeneously by the interpenetration of the other network (Zhao, 2012), and take the dry polymer networks as the 
reference state (Hong et al., 2009; Hong et al., 2008). Let Λi (i = S, L) be the stretch of each chain of the network i (i = S represents the 

short-chain network and i = L represents the long-chain network), we have Λi = η−
1
3

i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(λ2
1 + λ2

2 + λ2
3)/3

√

, where λ1, λ2, and λ3 are the 
stretches of the DN gel relative to the reference state, and ηi the volume fraction of the network i in the dry polymer networks. 
Moreover, the volume of the gel is the sum of the volume of the dry networks and the volume of the water phase. Under mechanical 
loads, the long polymer chains and small water molecules can undergo large configurational change without appreciable volumetric 
change. Following common practice, we assume that all individual molecules in the gel are incompressible, so that λ1λ2λ3 = 1 + νC, 
where ν is the volume per water molecule and C is the water concentration defined as the number of water molecules per volume of the 
dry network. 

In thermodynamics, the deformation of the DN gel under mechanical loads is governed by its free energy function, which comes 
from two molecular processes – (1) stretching polymer chains in the polymer networks, and (2) mixing polymer networks and water 
molecules. Following Flory and Rehner (Flory and Rehner, 1943), the free energy function of the DN gel per reference volume takes the 
form 

W =
∑

i=L, S
Ws

i + Wm, (1)  

where Ws
i is the free energy due to stretching the network i per reference volume, and Wm is the free energy due to mixing polymer 

networks and solvents per reference volume. The free energy due to stretching Ws
i can be calculated as 

Ws
i = ηiNinikT

(
βi

tanhβi
+ log

βi

sinhβi

)

, (2)  

where kT is the temperature in the unit of energy, Ni the number of chains of the network i per unit volume of the network i, ni the 

number of freely jointed links on a chain of the network i. The chain force βi relates to the stretch Λi as Λi =
̅̅̅̅ni

√ (
1

tanhβi
− 1

βi

)
(Treloar and 

Riding, 1979). The free energy of mixing Wm depends on the water content in the DN gel and takes the form that (See details of the 
derivation in Appendix A) 

Wm =
kT
ν

[

(J − 1)log
J − 1

J
+

∑

i=L, S
ηiχi

J − 1
J

]

, (3)  

where χi is a dimensionless measure of the strength of pairwise interactions between water molecules and monomers of the network i. J 
= λ1λ2λ3 = 1 + νC is the swelling ratio of the gel defined with respect to the dry polymer networks and measures the water content in 
the DN gel. In the absence of mechanical load and geometrical constraint, the DN gel swells and equilibrates with water in its sur-
roundings with isotropic stretches: λ1 = λ2 = λ3 = λ0, with the initial swelling ratio of the gel being J0 = λ3

0. 
The damage of DN gels under deformation is attributed to the breaking of polymer chains in the short-chain network. As the short- 

chain network is stretched, the chains in the network break sequentially. As a result, some of the chains become inactive terminal 
chains, reducing the chain density of the short-chain network, while other chains rearrange into longer chains, giving rise to increasing 
numbers of links on a chain of the short-chain network (Zhao, 2012). Let NS0 and nS0 be chain density and number of links per chain in 
the pristine short-chain network before deformation, such that the physical picture above can be captured by 
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NS = NS0exp[− p(Λmax
S − η− 1/3

S )] and nS = nS0exp[q(Λmax
S − η− 1/3

S )]. Here p and q are material parameters to characterize the decrease of 
chain density and increase of chain length. Λmax

S = max
0≤τ≤t

[ΛS(τ)] is the maximum stretch experienced by the chains of the short-chain 

network until the current time t. 
In the following, we use representative values p = q = 0.3698 (Zhao, 2012), ηS = 0.1 (Zhao, 2012), ηL = 0.9 (Zhao, 2012), nS0 = 50 

(Zhao, 2012), nL = 2000 (Zhao, 2012), χL = χS = 0.1 (Hong et al., 2009), which specify a DN gel with free-swelling swelling ratio of J0 

= 18.05 (Details about the calculation of J0 can be found in Appendix B). We will take this DN gel as the example to explicate the 
mechanism underpinning the delayed necking instability of DN gels. 

2.2. Instant necking instability of DN gels 

The migration of water in and out of the gel takes time. As a result, when a uniaxial tensile force is rapidly applied to the DN gel 
sample, the short time interval does not allow redistribution of water, and thus the water concentration C in the gel remains unchanged 
during stretching in such a short time. That is, the instantaneous deformation of the DN gel is volume-conserving with the swelling 
ratio being a constant (J = λ1λ2λ3 = Ĵ = const). To impose the incompressibility condition, we introduce a Lagrange multiplier Π to 
the free energy function W, which yields 

Ŵ = W + Π(J − Ĵ), (4)  

where W =
∑

i=L, S
Ws

i + Wm. Note that for the instantaneous stress-stretch response, J is fixed. Therefore, according to Eq. (3), the free 

energy of mixing Wm becomes a constant and does not contribute to the mechanical stresses. In this regard, taking the derivative of Ŵ 
with respect to principal stretches, we have the nominal stresses in principal directions as 

s1 =
∂Ŵ
∂λ1

=
∂
∑

i=L, SWs
i

λ1
+ Πλ2λ3 =

(
η

1
3
SNS

̅̅̅̅̅nS
√ kTβS

3ΛS
+

η
1
3
LNL

̅̅̅̅̅nL
√ kTβL

3ΛL

)

λ1 + Πλ2λ3, (5a)  

s2 =
∂Ŵ
∂λ2

=
∂
∑

i=L, SWs
i

λ1
+ Πλ1λ3 =

(
η

1
3
SNS

̅̅̅̅̅nS
√ kTβS

3ΛS
+

η
1
3
LNL

̅̅̅̅̅nL
√ kTβL

3ΛL

)

λ2 + Πλ1λ3, (5b)  

s3 =
∂Ŵ
∂λ3

=
∂
∑

i=L, SWs
i

λ3
+ Πλ1λ2 =

(
η

1
3
SNS

̅̅̅̅̅nS
√ kTβS

3ΛS
+

η
1
3
LNL

̅̅̅̅̅nL
√ kTβL

3ΛL

)

λ3 + Πλ1λ2. (5c) 

When the DN gel is subjected to uniaxial tension, we have s1 = s and s2 = s3 = 0; the stretches are λ1 = λ and λ2 = λ3 =
̅̅̅̅̅̅̅
J/λ

√
. The 

Lagrange multiplier Π can be solved by setting s2 = 0 in Eq. (5b) 

Fig. 2. Instant necking instability of DN gels under uniaxial tension. The mechanism for the instant necking instability can be illustrated by the 
instantaneous stress-stretch curve of a DN gel subject to uniaxial tension. When a uniaxial tensile force is rapidly applied to the DN gel sample, the 
original gel (point 1) elongates uniformly in the beginning, and then necking instability occurs instantaneously when the applied load reaches a 
critical level – the peak value of the curve (point 2). Note that the uniaxial tensile force is rapidly applied to the DN gel so that the short time interval 
(from time t = 0 to t = 0+) before necking initiation does not allow the change of water content. 
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Π = −

(
η

1
3
SNS

̅̅̅̅̅nS
√ kTβS

3ΛS
+

η
1
3
LNL

̅̅̅̅̅nL
√ kTβL

3ΛL

)
1
λ
. (6) 

Insert Eq. (6) into Eq. (5a), we obtain the nominal stress as 

s =
(

η
1
3
SNS

̅̅̅̅̅nS
√ kTβS

3ΛS
+

η
1
3
LNL

̅̅̅̅̅nL
√ kTβL

3ΛL

)(

λ −
J
λ2

)

. (7) 

As noted above, when the short-chain network is stretched, chains in the network break sequentially. Some of the chains become 
inactive terminal chains, reducing the chain density of the short-chain network, while other chains rearrange into longer chains, 
leading to increasing numbers of links on a chain of the short-chain network. The damage of the short-chain network can be char-
acterized by the chain alteration model NS = NS0exp[ − p(Λmax

S − η− 1/3
S ), nS = nS0exp[q(Λmax

S − η− 1/3
S )]. Substituting the expressions of NS 

and nS into Eq. (7) and considering that NS0nS0ν = 1 and NLnLν = 1, the nominal stress of the DN gel subjected to uniaxial tension can 
be given as 

sν
kT

=

⎛

⎜
⎝

η
1
3
SβS

3 ̅̅̅̅̅̅nS0
√ ΛS

exp

⎡

⎢
⎣ −

1
2

p

⎛

⎜
⎝Λmax

S − η− 1
3

S

⎞

⎟
⎠

⎤

⎥
⎦+

η
1
3
LβL

3 ̅̅̅̅̅nL
√ ΛL

⎞

⎟
⎠

(

λ −
J
λ2

)

. (8) 

Given J = Ĵ, Eq. (8) relates the applied nominal stress s to the stretch λ, yielding instantaneous stress-stretch curves (namely, the 
instantaneous s-λ curves). 

Fig. 3. Delayed necking instability of DN gels under uniaxial tension. (a) The long-term equilibrium deformation of the DN gel under uniaxial tension. Under 
tensile stress, DN Gels gradually absorb water and swell. For example, when subjected to a static stress of sν

kT = 7 × 10− 3, the DN gel can swell from its initial 
swelling ratio of J = 18.05 to 102.75. (b) The instantaneous stress-stretch curves of DN gels with different water contents. The peak value of the stress-stretch 
curve drops as the swelling ratio J increases. The delayed necking instability occurs if the peak value decreases to the applied stress level. The static stress sν

kT 

= 7 × 10− 3 triggers the necking instability when the DN gel swells to J = 38.62. The swelling process of gels takes time, which accounts for the delay in 
necking formation (the load is applied at time t = 0, while the necking occurs at t = t2 > 0). In all schematics, the change in color of the gel from dark green to 
light green indicates a gradual increase in the water content of the hydrogel. 
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This relation is sketched in Fig. 2 for the representative DN gel with J = J0 = 18.05. At a small stretch, the deformation-induced 
stiffening of polymer chains dominates, and the stress increases with the stretch. At an intermediate stretch, the damage-induced 
softening becomes important, and the stress falls as the stretch increases. As the long-chain network approaches its extension limit, 
the deformation-induced stiffening of long-chain network prevails again, and thus the stress rises again. The shape of the stress-stretch 
curve indicates a snap-through instability: under monotonic uniaxial tension, during which the tensile force increases rapidly, the DN 
gel (point 1 in Fig. 2) elongates uniformly in the beginning, and then necking instability suddenly sets in when the applied load reaches 
the peak value ( sν

kT = 9.3 × 10− 3) of the stress-stretch curve (point 2 in Fig. 2), which determines the critical load for the initiation of 
necking instability (Zhao, 2012), causing some regions of the gel to thin down more than others (point 3 in Fig. 2). Such necking 
instability occurs instantaneously once the applied load reaches the critical level, thus we call this type of necking instability the instant 
necking instability and the first peak value of the instantaneous stress-stretch curve the threshold for instant necking instability. 

2.3. Delayed necking instability of DN gels 

Under a subcritical static load, where a force is rapidly applied and then held at a constant level slightly below the threshold for 
instant necking instability, delayed necking instability could occur in the DN gel. For example, as shown in Fig. 3(b), when a static 
subcritical stress sνkT = 7 × 10− 3 is applied to the DN gel at time t = 0, the gel immediately elongates from the initial free-swelling state 
[point 1 in Fig. 3(b), t = 0] to an instantaneous deformed state [point 2 in Fig. 3(b), t = 0+]. 

Notably, under constant applied stress sν
kT = 7 × 10− 3, the instantaneous deformed state denoted by point 2 is not the thermo-

dynamic equilibrium of the open system that consists of the stressed gel and its environment, and the gel will keep swelling by imbibing 
water to equilibrate with its surroundings and mechanical loads. The nominal principal stresses in the equilibrium state are given by 
(Ma et al., 2020) 

s1 =
∂W
∂λ1

−
μ
ν

J
λ1
, (9a)  

s2 =
∂W
∂λ2

−
μ
ν

J
λ2
, (9b)  

s3 =
∂W
∂λ3

−
μ
ν

J
λ3
, (9c)  

where μ represents chemical potential of water molecules in the environment. Here we assume the DN gel is immersed in pure water, 
thus μ = 0. Note that the swelling ratio J varies as water molecules migrate in and out of the gel, such that the free energy of mixing Wm 

is no longer a constant. The total free energy of the DN gel immersed in water takes the form that 

W =
∑

i=L, S
ηiNinikT

(
βi

tanhβi
+ log

βi

sinhβi

)

+
kT
ν

[

(J − 1)log
J − 1

J
+

∑

i=L, S
ηiχi

J − 1
J

]

. (10) 

Since the DN gel is subjected to uniaxial tension, we have s1 = s and s2 = s3 = 0. Plugging Eq. (10) into Eqs. (9) and considering the 
chain alteration model described above yield that 

⎛

⎜
⎝

η
1
3
SβS

3 ̅̅̅̅̅̅nS0
√ ΛS

exp

⎡

⎢
⎣ −

1
2

p

⎛

⎜
⎝Λmax

S − η− 1
3

S

⎞

⎟
⎠

⎤

⎥
⎦+

η
1
3
LβL

3 ̅̅̅̅̅nL
√ ΛL

⎞

⎟
⎠λ1 +

[

log
(

1 −
1
J

)

+
1
J
+

χSηS + χLηL

J2

]
J
λ1

=
sν
kT

(11a)  

⎛

⎜
⎝

η
1
3
SβS

3 ̅̅̅̅̅̅nS0
√ ΛS

exp

⎡

⎢
⎣ −

1
2

p

⎛

⎜
⎝Λmax

S − η− 1
3

S

⎞

⎟
⎠

⎤

⎥
⎦+

η
1
3
LβL

3
̅̅̅
L

√
ΛL

⎞

⎟
⎠λ2 +

[

log
(

1 −
1
J

)

+
1
J
+

χSηS + χLηL

J2

]
J
λ2

= 0. (11b) 

Given any applied stress s, λ1 and λ2 = λ3 can be solved from Eq. (11), and the swelling ratio J is given by J = λ1λ2
2. In Fig. 3(a), we 

plot the normalized applied stress sνkT as a function of J (i.e., the long-term equilibrium s-J curve). Note that J measures the water content 
in the gel by νC = J − 1. The curve reveals a salient feature of hydrogels: a gel under tension tends to absorb more solvents relative to 
its unstressed state; the higher the tensile stresses, the more solvents the gel can take in. Under the subcritical static stress sν

kT = 7 ×

10− 3, the DN gel can swell from its initial swelling ratio of J0 = 18.05 to J = 102.75 by imbibing water [Fig. 3(a)]. Note that this 
swelling process of gels due to water migration takes time. 

It is well-known that gels become more compliant with increasing solvent content, such that, as J increases, the peak value of the 
instantaneous stress-stretch curve continuously drops [Fig. 3(b)]. After imbibing water and swelling for a while, the gel swells to J =
33, presumably at time t = t1 > 0, the peak value of the corresponding stress-stretch curve drops significantly compared to the initial 
curve with J = 18.05, but is still higher than the applied stress level. The DN gel is in an intermediate swollen state [point 3 in Fig. 3 
(b)] without necking. When the gel continues swelling to J = 38.62 at time t = t2 > t1, the peak value of the stress curve falls to the 
applied stress level, and the necking instability eventually sets in [point 4 in Fig. 3(b)]. Compared with the instant necking instability 
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that occurs immediately after a critical load is applied to the DN gel, the necking formation under subcritical loads does not take place 
until a span of time has elapsed after the static load is applied, and the time-dependent swelling process accounts for the delay in time 
(from t = 0 to t = t2) for the onset of the necking instability. To this end, we call this mode of necking instability the delayed necking 
instability. A critical value of applied stress exists, below which delayed necking instability cannot be triggered (see Appendix C for 
further discussion), we call this critical value the threshold for delayed necking instability. 

Dimensional considerations dictate that the delayed time of the delayed necking instabilities scales with H2
0/D, where H0 represents 

the thickness of the hydrogel bar and D the diffusivity of water molecules. At room temperature, the diffusivity D can be approximated 
by D ≈ 1 × 10− 9 m2s− 1 (Cheng et al., 2019; Hong et al., 2008; Wang and Hong, 2012). For a hydrogel bar with an initial thickness 
about H0 = 1 mm, the time required by water molecules to migrate into the hydrogel is on the order of 1000 s, which roughly gives the 
delayed time scale for the delayed necking instability. Moreover, we would like to emphasize that precise calculation of the delayed 
time requires a full account of the time-dependent diffusion process by directly solving fully coupled deformation-diffusion equations, 
which is beyond the scope of this paper and will be studied in the future work. 

2.4. Equilibrium deformation without necking instability 

When subject to a static stress, sν
kT = 3 × 10− 3 for instance, which is below the threshold for delayed necking instability, the DN gel 

elongates immediately from the initial free-swelling state [point 1 in Fig. 4(b)] to the instantaneous deformed state [point 2 in Fig. 4 
(b)]. Afterward, due to the water absorption driven by the tensile stress, the DN gel imbibes water from the environment and swells. 
However, when the gel eventually arrives at the equilibrium swelling state of J = 20.58 [Fig. 4(a)], the peak-value of the stress-stretch 
curve for necking instability, which is about 8.9 × 10− 3, still tops the applied stress of sνkT = 3 × 10− 3 [Fig. 4(b)]. The gel ends up in an 
equilibrium deformed state without necking formation. That is, necking instability does not take place in DN gels subject to uniaxial 

Fig. 4. Equilibrium deformation without necking instability. (a) Under a static stress of sν
kT = 3 × 10− 3, the DN gel can gradually swell, with its 

swelling ratio J increasing from 18.05 at the free-swelling state to 20.58 at the final equilibrium state. (b) When the DN gel reaches the equilibrium 
of J = 20.58, presumably at time t = t1, the applied stress sν

kT = 3 × 10− 3 is still lower than the peak value of the instantaneous stress-stretch curve. 
Therefore, the gel eventually reaches an equilibrium state characterized by uniform deformation without necking instability. In the schematics, the 
change in color from dark green to light green denotes the gradual increase in the water content. 
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stress that is below the threshold for delayed necking instability. 

2.5. A map delineating the three instability modes 

The necking instability of DN gels under tension is affected by both the applied load and the material property. For example, the 
necking instability can be tuned by varying the chain length of the long-chain network (Zhao, 2012). Figure 5 maps the regimes of the 
three above-mentioned instability modes in the parameter space spanned by the dimensionless applied stress sν

kT and the dimensionless 
chain length of the long-chain network nL. Instant necking instability corresponds to high tensile stresses exceeding the threshold for 
instant necking instability, while the equilibrium deformation mode prevails for relatively low static stresses below the threshold for 
delayed necking instability (The procedure for determining the threshold for delayed necking instability is given in Appendix C). These 
two thresholds define a new regime of delayed necking instability, a new instability mode of hydrogels that has been largely unex-
plored before. 

3. Delayed burst of an inflated spherical hydrogel balloon 

3.1. Instant deformation and long-term equilibrium deformation of an inflated hydrogel balloon 

Herein, we consider a spherical balloon made of single-network hydrogel which contains only one polymer network and water 
molecules (Cheng et al., 2019). Take the dry network as the reference state, the free energy of the single-network hydrogel takes the 
form that 

W = Ws + Wm = NnkT
(

β
tanhβ

+ log
β

sinhβ

)

+
kT
ν

[

(J − 1)log
(

J − 1
J

)

−
χ
J

]

, (12)  

where Ws is the free energy due to stretching the network per reference volume, and Wm is the free energy due to mixing the networks 
and solvents per reference volume. Moreover, N is the number of polymer chains per reference volume, n the number of freely jointed 
links on a polymer chain, kT the temperature in the unit of energy, ν the volume of the water molecule, χ the dimensionless measure of 
the strength of pairwise interactions between water molecules and monomers of the single network. β = L− 1(Λ /

̅̅̅
n

√
), where L− 1(x) is 

the inverse Langevin function and Λ is the stretch of individual polymer chain. When subjected to an internal pressure, the deformation 

of the balloon can be characterized by stretches λθ, λϕ and λr in the spherical coordinate system. Then Λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2

θ+λ2
ϕ+λ2

r
3

√

and the swelling 
ratio of the gel J = λθλϕλr.  

(i) Instant deformation of the hydrogel balloon 

When the internal pressure is applied rapidly, the instant deformation of the balloon wall is volume-conserved because the short 
time interval does not allow water migration in and out of the gel. Therefore, during the instantaneous deformation, the swelling ratio 
of the wall of the hydrogel balloon remains unchanged, i.e., J = Ĵ (Ĵ represents a constant). Following the derivation in Section 2.2, we 

Fig. 5. Regimes of the three modes of necking instability plotted on the plane spanned by two dimensionless parameters: instant necking instability, 
the equilibrium deformation without necking, and the delayed necking instability mode located in between. 
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can modify the free energy function W of the hydrogel balloon by imposing the incompressibility condition and taking into account 
that J = Ĵ is a constant, as follows, 

Ŵ = NnkT
(

β
tanhβ

+ log
β

sinhβ

)

+ Π(J − Ĵ), (13)  

where Π denotes a Lagrange multiplier. Note that the free energy of mixing Wm has been neglected in Eq. (13) since it becomes a 
constant when J is fixed and does not contribute to the mechanical stresses. 

In response to an internal pressure p, the balloon deforms in a spherically symmetric fashion, such that σθ = σϕ, and λθ = λϕ. 

Considering σi =
∂Ŵ
∂λi

λi
J (i = r, θ, ϕ), Nnν = 1 (i.e., the dry polymer network itself is also incompressible), and J = λrλ2

θ , we obtain 
Cauchy stresses as 

σθ = σϕ =
λθ

J
∂W
∂λθ

+ Π =
kT
ν

β
3

̅̅̅
n

√
Λ

λ2
θ

J
+ Π, (14-1)  

σr =
λr

J
∂W
∂λr

+ Π =
kT
ν

β
3

̅̅̅
n

√
Λ

J
λ4

θ
+ Π. (14-2) 

When inflated by the internal pressure p, Cauchy stresses in the radial and hoop directions are 

σθ =
pr
2h

, (15-1)  

σr = 0, (15-2)  

where r and h are the radius and the thickness of the balloon in the deformed state, respectively. Combining Eqs. (14) and (15) yields 
that 

pr
2h

=
kT
ν

β
3

̅̅̅
n

√
Λ

(
λ2

θ

J
−

J
λ4

θ

)

. (16) 

Let R and H be the radius and the thickness of the hydrogel balloon in the reference state. The hoop stretch λθ and radial stretch λr 

can be given by λθ = r
R and λr = h

H. Plugging the expressions of λθ and λr into Eq. (16) leads to 

Fig. 6. The instantaneous pressure-stretch curve (p-λθ curve). Instant burst instability of a hydrogel balloon takes place when the rapidly applied 
pressure p reaches the peak value of the curve. In the schematics, the intact balloon wall is illustrated as solid lines, while the fractured balloon wall 
as a consequence of the burst instability is sketched as dashed lines. 
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pν
kT

=
2H
R

β
3

̅̅̅
n

√
Λ

(
1
λθ

−
J2

λ7
θ

)

. (17) 

Based on Eq. (17), instantaneous pressure-stretch curves (namely, the p-λθ curve) shown in Fig. 6-8 are sketched.  

(ii) Long-term equilibrium deformation of the hydrogel balloon 

When the hydrogel balloon is subjected to a static internal pressure p for a prolonged period, the hydrogel will imbibe water slowly 
and swell continuously, eventually equilibrating with the mechanical load and the environment in the long term. The long-term 
equilibrium response of the hydrogel balloon can be obtained by using σi =

∂W
∂λi

λi
J (i = r, θ, ϕ). It is worthwhile to mention that W 

takes the form given by Eq. (12) and the swelling ratio J = λ2
θ λr is no longer a constant in this scenario. It follows that the corresponding 

hoop and radial Cauchy stress components are 

σθ = σϕ =
∂W
∂λθ

λθ

J
=

kT
ν

β
3

̅̅̅
n

√
Λ

λ2
θ

J
+

kT
ν

[

log
(

1 −
1
J

)

+
1
J
+

χ
J2

]

, (18a)  

σr =
∂W
∂λr

λr

J
=

kT
ν

β
3

̅̅̅
n

√
Λ

J
λ4

θ
+

kT
ν

[

log
(

1 −
1
J

)

+
1
J
+

χ
J2

]

. (18b) 

By substituting Eqs. (18) into Eqs. (15), we obtain 

Fig. 7. . Delayed burst instability of a hydrogel balloon. (a) The equilibrium pressure-swelling curve (i.e., the equilibrium p-J curve), which gives 
the long-term equilibrium swelling ratio corresponding to an applied pressure. (b) The instantaneous pressure-stretch curve (i.e., the instantaneous 
p-λθ curve), which describes the instantaneous response of the gel balloon at a given swelling ratio J. As the gel takes in water and swells with 
increasing J, delayed burst occurs once the peak value of the p-λθ curve reduces to the applied pressure level. 
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pν
kT

=
2Hλr

Rλθ

(
β

3
̅̅̅
n

√
Λ

λ2
θ

J
+

[

log
(

1 −
1
J

)

+
1
J
+

χ
J2

])

, (19a)  

kT
ν

β
3

̅̅̅
n

√
Λ

J
λ4

θ
+

kT
ν

[

log
(

1 −
1
J

)

+
1
J
+

χ
J2

]

= 0 (19b) 

Given an internal pressure p, the equilibrium swelling ratio J and hoop stretch λθ can be calculated by solving Eqs. (19) – note that 
λr = J/λ2

θ . Then, the equilibrium pressure-swelling curves (i.e., the equilibrium p-J curve) provided in Fig. 7 and 8 can be obtained. 
Moreover, setting p = 0 gives the initial swelling ratio J0 of the hydrogel balloon before any internal pressure is applied. 

3.2. The three instability modes of the inflated spherical hydrogel balloon 

In this section, the following values are used for the single-network hydrogel balloon: n = 500 (Zhao, 2012), χ = 0.1 (Hong et al., 
2009), H/R = 1/100 (Cheng et al., 2019). The rationale for these specified chosen values is as follows: for hydrogels, the parameter n – 
i.e., number of links per chain – varies approximately between 10 and 5000 (Zhao, 2012). For instance, according to Zhao et al. (Zhao, 
2012), n is set to 50 for short-chain networks and 2000 for long-chain networks, respectively. Herein, we take n = 500 accordingly. 

Fig. 8. Equilibrium deformation without burst instability. (a) The equilibrium p-J curve. Under a static internal pressure pν
kT = 5 × 10− 6, the 

hydrogel can swell from J = 24.38 to 30.06. (b) The instantaneous p-λ curves. It shows that the hydrogel balloon ends up with an equilibrium 
deformation state without burst instability. 
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From another perspective, the dimensionless crosslinking density Nν of hydrogels may be in the range of 1 × 10− 4 ∼ 1 × 10− 1 (Hong 
et al., 2009). Herein, we choose Nν to be 2 × 10− 3. Taking into account the volume conservation condition of nNν = 1, n is calculated 
to be 500. Moreover, the value of parameter χ is typically in the range of 0 ∼ 1.2 (Hong et al., 2009). Following Hong et al., we choose χ 
to be 0.1. For the thickness-to-radius ratio H/R, a value of 1/100 which is typical for thin-walled balloons is used (Cheng et al., 2019). 
Given these values, the initial swelling ratio of the hydrogel balloon is J0 = 24.38. We find there exists a delayed instability mode for 
the burst instability of hydrogel balloons.  

(i) Instant burst instability. 

When an internal pressure p is applied rapidly, the hydrogel balloon deforms instantaneously, with the swelling ratio J remaining to 
be 24.38. Fig. 6 sketches the instantaneous pressure-stretch curve (p-λθ curve), where the peak pressure value is pv

kT = 8.67 × 10− 6. 
When the internal pressure reaches the critical level (i.e., the peak value of the p-λθ curve), snap-through instability occurs instan-
taneously, often causing the burst of the hydrogel balloon. Such a phenomenon is called instant burst instability.  

(ii) Delayed burst instability. 

Suppose a subcritical static internal pressure pν
kT = 7.4 × 10− 6 is applied to the hydrogel balloon. The burst instability will not occur 

because the peak value (pν
kT = 8.67 × 10− 6) of the instantaneous p-λθ curve at J = 24.38 is higher than the applied pressure, as evident 

from Fig. 7(b). Fig. 7(a) plots the equilibrium pressure-swelling curve (i.e., equilibrium p-J curve), which characterizes the long-term 
equilibrium deformation of the hydrogel balloon in response to the static internal pressure and is obtained by solving Eqs. (19). The p-J 
curve shows that, under a static internal pressure of pν

kT = 7.4 × 10− 6, the hydrogel balloon will absorb water unboundedly. Conse-
quently, as the swelling ratio J increases due to water absorption, the hydrogel softens and the peak value of the instantaneous p-λθ 

curve decreases [Fig. 7(b)]. When the swelling ratio rises to J = 39.86, the peak value of the instantaneous p-λθ curve drops to the 
applied pressure level, thereby leading to the burst instability. Owing to the fact that it takes a period of time for the gel to imbibe water 
and increase its swelling ratio from 24.38 to 39.86, we call such instability taking place after a time of delay as the delayed burst 
instability of hydrogel balloon.  

(iii) Equilibrium deformation without burst instability. 

When we apply a relatively low internal pressure, e.g., pν
kT = 5 × 10− 6, to the hydrogel balloon, the pressure is not sufficiently large 

to trigger the instant burst instability; The gel balloon will take in water and swell, with its swelling ratio J increasing from 24.38 at the 
initial free-swelling state to 30.06 at the equilibrium state [Fig. 7(a)]. Note that the peak value of the instantaneous p-λθ curve with J 
= 30.06 is pν

kT = 8.1 × 10− 6, higher than the applied pressure. That is, the applied pressure cannot induce the delayed instability as 
well. The hydrogel balloon ends up with an equilibrium deformation state without burst instability. 

4. Delayed bulging of a pressurized cylindrical hydrogel tube 

4.1. Instant deformation and long-term equilibrium deformation of a pressurized cylindrical hydrogel tube 

In this section, we consider a cylindrical hydrogel tube made of a single-network hydrogel, of which the free energy function takes 
the same form as that used in Section 3 [Equation (12)]. When the cylindrical tube is inflated by a uniform internal pressure p, it 

expands by stretches λθ, λr and λz. Thus Λ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ2

θ+λ2
r +λ2

z
3

√

and the swelling ratio of the gel J = λθλrλz.  

(i) Instant deformation of a pressurized cylindrical hydrogel tube 

The hydrogel tube is subjected to an internal pressure p and a dead weight F hanging below, as illustrated in Fig. 1(c). As extensively 
discussed above, the instantaneous deformation of the hydrogel is volume-conserving, with a constant swelling ratio J = Ĵ. To this end, 
by taking into account the incompressibility condition (i.e., J = Ĵ), we can recast the free energy function (12) in the form that 

Ŵ = NnkT
(

β
tanhβ

+ log
β

sinhβ

)

+ Π(J − Ĵ), (20)  

where Π is a Lagrange multiplier. 

The Cauchy stresses can be calculated by σi =
∂Ŵ
∂λi

λi
J (i = r, θ, z). By considering that Nnν = 1 and J = λrλθλz, the expressions of 

Cauchy stresses are given by 

σθ =
λθ

J
∂W
∂λθ

+ Π =
kT
ν

β
3

̅̅̅
n

√
Λ

λ2
θ

J
+ Π, (21a) 
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σr =
λr

J
∂W
∂λr

+ Π =
kT
ν

β
3

̅̅̅
n

√
Λ

λ2
r

J
+ Π. (21b)  

σz =
λr

J
∂W
∂λz

+ Π =
kT
ν

β
3

̅̅̅
n

√
Λ

λ2
z

J
+ Π. (21c) 

When subjected to an internal pressure p, radial and hoop stresses in the gel are 

σθ =
pr
h
, (22a)  

σr = 0, (22b)  

where r and h are the radius and the thickness of the tube in the current configuration, respectively. Combining Eqs. (21) and (22), we 
can obtain the expression of the internal pressure p as 

pν
kT

=
h
r

β
3

̅̅̅
n

√
Λ

(
λ2

θ

J
−

λ2
r

J

)

(23) 

Here r = λθR and h = λrH, where R and H are the radius and the thickness of the hydrogel tube in the reference state (i.e., the dry 
polymer network). We can recast the internal pressure p in the form that 

pν
kT

=
H
R

β
3

̅̅̅
n

√
Λ

1
λ2

θλz

(
λ2

θ − λ2
r

)
. (24) 

Note that a dead weight F is hanging below the gel tube. Therefore, the force balance along z direction (namely, the longitudinal 
direction of the tube) gives that 

σz =
pπr2 + F

2πrh
. (25) 

By replacing r and h with r = λθR and h = λrH, Eq. (25) can be rewritten as 

σzν
kT

=
R

2H
λθ

λr

νp
kT

+
1

λθλr

sappliedν
kT

(26)  

where sapplied = F
2πRH is the applied nominal stress by the dead weight F along the z direction. By subtracting Eq. (21b) from Eq. (21c) 

and taking into account that σr = 0, σz can also be expressed as 

Fig. 9. The instantaneous pressure-volume curve (p-λ2
θ λz curve). Instant bulging instability of a pressurized cylindrical hydrogel tube takes place 

when the applied pressure reaches the peak value of the curve. 
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σzν
kT

=
σzν
kT

−
σrν
kT

=
β

3
̅̅̅
n

√
Λ

(
λ2

z

J
−

λ2
r

J

)

. (27) 

Combining Eq. (26) and Eq. (27) yields that 

R
2H

λθ

λr

pν
kT

+
1

λθλr

sappliedν
kT

=
β

3
̅̅̅
n

√
Λ

(
λ2

z

J
−

λ2
r

J

)

(28) 

Plugging Eq. (24) into Eq. (28), we can obtain the equation 

1
2

β
3

̅̅̅
n

√
Λ

1
λz

(
λ2

θ − λ2
r

)
+

sappliedν
kT

=
β

3
̅̅̅
n

√
Λ

1
λz

(
λ2

z − λ2
r

)
. (29) 

For a hydrogel balloon with a constant swelling ratio J = λθλrλz = Ĵ, given an internal pressure p and dead weight F, the stretches 
λθ, λr and λz can be determined by solving Eqs. (24) and (29). Accordingly, instantaneous pressure-volume curves (i.e., instantaneous 
p-λ2

θ λz curves) shown in Figs. 9-11 can be obtained. One notes that λ2
θ λz describes the change of volume enclosed by the hydrogel tube, 

Fig. 10. Delayed bulging instability of a hydrogel tube. (a) The equilibrium pressure-volume curve (i.e., the equilibrium p-J curve). It indicates that 
a hydrogel tube subjected to an internal pressure of pv

kT = 7.2 × 10− 6 will gradually absorb water and swell with increasing swelling ratio J. (b) The 
instantaneous pressure-volume curves (i.e., the instantaneous p-λ2

θ λz curve), which describe the instantaneous response of the gel tube at a given 
swelling ratio J. Note that the peak value of the instantaneous pressure-volume curve corresponds to the bulging initiation. As the gel takes in water 
and swells with increasing J, delayed burst occurs once the peak value of the p-λθ curve reduces to the applied pressure level. 
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and the peak value of the instantaneous p-λ2
θ λz curve determines the critical stress at which the bulging process initiates (Chater and 

Hutchinson, 1984).  

(ii) Long-term equilibrium deformation of a pressurized cylindrical hydrogel tube 

Driven by the internal pressure p and the dead weight F, the long-term deformation of the hydrogel tube is accompanied by water 
absorption, until the entire system consisting of the gel, the mechanical loads and the water reservoir reaches an equilibrium, such that 
the swelling ratio J is not anymore a constant. Using the free energy given by Eq. (12), we can derive the Cauchy stresses as follows 

νσθ

kT
=

∂W
∂λθ

λθ

J
=

β
3

̅̅̅
n

√
Λ

λ2
θ

J
+

[

log
(

1 −
1
J

)

+
1
J
+

χ
J2

]

, (30a)  

Fig. 11. Equilibrium deformation without bulging instability. (a) The equilibrium p-J curve. Under a static internal pressure pν
kT = 5 × 10− 6, the 

hydrogel can swell from J = 20.24 to 25.18. (b) The instantaneous p-λ curves. It shows that the bulging of hydrogel tube does not occur under the 
internal pressure pν

kT = 5 × 10− 6. 
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νσr

kT
=

∂W
∂λr

λr

J
=

β
3

̅̅̅
n

√
Λ

λ2
r

J
+

[

log
(

1 −
1
J

)

+
1
J
+

χ
J2

]

, (30b)  

νσz

kT
=

∂W
∂λz

λz

J
=

β
3

̅̅̅
n

√
Λ

λ2
z

J
+

[

log
(

1 −
1
J

)

+
1
J
+

χ
J2

]

. (30c) 

Combining Eqs. (22), (25) and Eqs. (30) yields that 

pν
kT

=
Hλr

Rλθ

(
β

3
̅̅̅
n

√
Λ

λ2
θ

J
+

[

log
(

1 −
1
J

)

+
1
J
+

χ
J2

])

, (31a)  

β
3

̅̅̅
n

√
Λ

λ2
r

J
+

[

log
(

1 −
1
J

)

+
1
J
+

χ
J2

]

= 0, (31b)  

R
2H

λθ

λr

νp
kT

+
1

λθλr

sappliedν
kT

=
β

3
̅̅̅
n

√
Λ

λ2
z

J
+

[

log
(

1 −
1
J

)

+
1
J
+

χ
J2

]

. (31c) 

When the applied pressure p and the dead weight F are known, λθ, λr, and λz can be determined by solving Eqs. (31), which gives the 
long-term equilibrium pressure-swelling curve (i.e., the equilibrium p-J curve) shown in Fig. 10 and 11. 

Herein, we refer to the state, in which the gel tube equilibrates with the given dead weight F and the water reservoir (p = 0), as the 
initial state. The corresponding initial swelling ratio J0 can be calculated by setting p = 0 in Eqs. (31). 

4.2. Three instability modes of the pressurized cylindrical hydrogel tube 

When analyzing the instability modes of the pressurized cylindrical gel tube, we take the following values: n = 300 (Zhao, 2012), χ 
= 0.1 (Hong et al., 2009), H/R = 1/100 (Cheng et al., 2019), sappliedν/kT = 5 × 10− 3. The corresponding initial free-swelling ratio of 
the hydrogel is J0 = 20.24. We will show that the delayed instability mode also exists for the bulging instability of pressurized cy-
lindrical hydrogel tubes.  

(i) Instant bulging instability 

When an internal pressure p that increases rapidly is applied to the hydrogel tube, the tube expands and elongates instantaneously, 
with the swelling-ratio J remaining at its initial value of 20.24, without any water uptake. Once the pressure p increases to the peak 
value (pv

kT = 7.98 × 10− 6) of the instantaneous pressure-volume curve (p-λ2
θ λz curve) shown in Fig. 9, bulging instability of the tube 

takes place. Since the bulging occurs immediately when the pressure reaches the critical level, such instability mode is termed instant 
bulging instability.  

(ii) Delayed bulging instability. 

If an internal pressure pv
kT = 7.2 × 10− 6, which does not exceed the peak value (pv

kT = 7.98 × 10− 6) of the initial instantaneous 
p-λ2

θ λz curve, is applied to the gel tube, instant bulging does not occur. Then the gel tube will gradually take in water molecules and 
swell in response to the static internal pressure pv

kT = 7.2 × 10− 6, as shown in Fig. 10(a). As a consequence, the peak value of the 
instantaneous p-λ2

θ λz curve continuously decreases as the swelling ratio of the hydrogel tube increases [Fig. 10(b)]. Till the swelling 
ratio reaches J = 30.0, the peak value of the instantaneous p-λ2

θ λz curve drops to the static internal pressure level pv
kT = 7.2 × 10− 6, 

leading to the onset of the bulging instability. Because the bulging does not occur until a span of time has eclipsed after the internal 
pressure is applied, we define such instability mode as the delayed bulging instability.  

(iii) Equilibrium deformation without bulging instability. 

Now we consider the deformation of hydrogel tube subjected to a low internal pressure. Take pv
kT = 5 × 10− 6 as an example. Instant 

bulging instability does not occur and the gel tube keeps expanding by imbibing water until the swelling ratio J reaches 25.18 [Fig. 11 
(a)]. At this moment, the peak value of the instantaneous p-λ2

θ λz curve pν
kT equals to 7.54 × 10− 6, still higher than the applied internal 

pressure pv
kT = 5 × 10− 6. Consequently, the applied internal pressure pv

kT = 5 × 10− 6 is unable to trigger the bulging instability. That is, 
the gel tube will end up with the equilibrium deformation without bulging instability. 

5. Universality of delayed tensile instabilities 

As discussed above, the delayed instability mode of hydrogels is not limited to necking, but is universal for many types of in-
stabilities that are triggered by tensile stresses, including necking instability of the stretched DN gel, burst of a pressurized hydrogel 
balloon, and bulging of an inflated hydrogel tube. The underlying physics are as follows: (1) The onset of all types of tensile instabilities 
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of hydrogels mentioned above is linked to a critical load above which the instability occurs (e.g., the peak value of the instantaneous 
stress-stretch curve for example). This critical load, apparently, scales with the modulus of the hydrogel. (2) One salient feature of 
hydrogels is that, when subject to a tensile stress, hydrogel swells by imbibing more water relative to its unstressed free-swelling state. 
The increase in water content reduces the number of polymer chains per volume of the gel, thereby lowering the gel modulus as well as 
the threshold for instantaneous instability. (3) When a subcritical tensile load, which is slightly below the threshold for instant 
instability, is applied to the hydrogel structure, the water absorption driven by tensile stresses causes a gradual decrease in the critical 

Fig. A1. A liquid lattice model in which long polymer chains and short polymer chains are allocated in water. It is assumed the monomers and water 
molecules are identical in size (Flory, 1953). 

Fig. C1. The long-term equilibrium deformation and instantaneous mechanical response of DN gels under uniaxial tension. Herein, nL = 2000. (a) 
The equilibrium stress-volume curve (i.e., the equilibrium s-J curve), which relates the long-term equilibrium swelling ratio to applied stress. (b) The 
instantaneous stress-stretch curve (i.e., the instantaneous s-λ curve), which describes the instantaneous response of DN gels with a given swelling 
ratio J. 
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load for triggering the delayed instability. Consequently, the delayed instability mode becomes inevitable when the critical load for 
instability drops to the applied load level. 

It is worthwhile to note that instability triggered by compression (e.g., creasing of hydrogels) is unlikely to occur in a delayed 
fashion. When a subcritical compressive load is applied to a hydrogel, the structure remains stable and loses water, giving rise to an 
increased critical load for the instability, such that the critical load can never drop to the applied load level. That is, tension is a 
necessary condition for delayed instabilities of hydrogels. In this regard, the delayed instabilities analyzed in this work are called 
delayed tensile instability to underline the fact that only instabilities of hydrogels triggered by tensile stresses can have a delayed 
mode. 

6. Conclusion 

In this work, we theoretically uncover a new instability mode that has remained largely unstudied before: the delayed tensile 
instability of hydrogels. Most existing studies concern instant instabilities that occur instantaneously when the applied load reaches a 
critical level. In stark contrast, the delayed tensile instability, as the name suggests, does not take place until a period has elapsed after a 
static load is applied. The cause of the delayed tensile instability of hydrogels is attributed to the time-dependent swelling process of 
hydrogels induced by tension. 

The delayed tensile instabilities are counterintuitive as they are triggered by loads below the threshold for the well-known instant 
instability. Such an anomalous instability mode may occur in functional hydrogel structures such as artificial cartilage, which are in 
contact with water in the environment and subjected to prolonged mechanical loads. Given its latent nature, the delayed instability 
mode could be more detrimental than the instant instability mode. The results from this study shed light on guidelines in designing 
hydrogels to mitigate such a delayed instability. On the other hand, a better understanding of the delayed instability could potentially 
enable design of new applications to harness such a less unstudied instability. We call for further experiments to explore such 
opportunities. 
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Fig. C2. The long-term equilibrium deformation and instantaneous mechanical response of DN gels under uniaxial tension. Herein, nL = 1000. (a) 
The equilibrium stress-swelling curve (i.e., the equilibrium s-J curve). (b) The instantaneous stress-stretch curves (i.e., the instantaneous s-λ curve). 
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Appendix A. The derivation of the free energy of mixing Wm for DN gels 

Based on the liquid lattice model developed by Flory and Huggins, we derive the free energy of mixing of the double-network 
hydrogel (DN gel). As shown in Fig. A1, suppose that there are Mw number of water molecules, ML number of chains of the long- 
chain network and MS number of chains of the short-chain network in the lattice. Let nL and nS denote the number of monomers 
on each chain of the long-chain and short-chain networks, respectively. The Helmholtz free energy Fm can be expressed as (Flory, 1953) 

Fm = kT

[

Mwlogϕw +
∑

i=L, S
Milogϕi +Mw

∑

i=L, S
χiϕi

]

, (A1)  

where ϕw is the volume fraction of water in the DN gel (represented by the lattice model) and ϕi the volume of the polymer network i (i 
= L and i = S represent the long-chain network and short-chain network, respectively). χi is a dimensionless measure of the strength of 
pairwise interactions between water molecules and monomers of the network i. 

As noted in the main text, the dry polymer networks are taken as the reference state to characterize the deformation of the DN gel. 
Following Flory and Huggins, we assume that the water molecule and monomers of both long-chain and short-chain networks take the 
same volume ν. Then we can correlate the free energy of mixing Wm with the Helmholtz free energy of mixing Fm by Wm = Fm 

/(nLMLν + nSMSν). Accordingly, Wm takes the form that 

Wm =
kT
ν

(

νClogϕw +
ML

nLML + nSMS
logϕL +

MS

nLML + nSMS
logϕS + νCχLϕL + νCχSϕS

)

, (A2)  

where C= Mw
nLMLν+nSMSν is the number of water molecules per volume of dry polymer networks. We define ηi as the volume fraction of the 

network i in the dry polymer networks (ηL=
nLMLν

nLMLν+nSMSν, ηS=
nSMSν

nLMLν+nSMSν), such that ML
nLML+nSMS

can be simplified as ηL/nL. Note that 0 < ηL 

< 1 and nL commonly takes a large value. Therefore, the term ML
nLML+nSMS

≈ 0. Similarly, MS
nLML+nSMS 

also approaches zero. Then Eq. (A2) 
reduces to 

Wm =
kT
ν (νClogϕw + νCχLϕL + νCχSϕS). (A3) 

Note that Cν is the volume of water molecules in the gel divided by the volume of dry polymer networks and equals to J − 1, J is the 
swelling ratio of the gel, which is defined as the volume of the DN gel divided by the volume of the dry polymer networks. Therefore, 
the volume fraction of water in the DN gel ϕw is equal to J− 1

J , and the volume fraction of the long-chain and short-chain networks is ϕL 

= ηL
1
J and ϕS = ηS

1
J, respectively. Eq. (A3) can be rewritten as 

Wm =
kT
ν

[

(J − 1)log
J − 1

J
+

∑

i=L, S
ηiχi

J − 1
J

]

. (A4) 

Eq. (A4), also listed as Eq. (3) in the main text, gives the free energy of mixing Wm for DN gels. 

Appendix B. The calculation of the equilibrium swelling ratio J0 for DN gels 

The initial swelling ratio of the DN gel, i.e., J0 of the gel in the free-swelling state before any mechanical load is applied, can be 
obtained by setting s1 = s2 = s3 = 0 and λ1 = λ2 = λ3 =

̅̅̅̅̅
J0

3
√

= λ0 in Eqs. (11a) and (11b) in the main text, that is, 
⎛

⎜
⎝

η
1
3
SβS

3 ̅̅̅̅̅̅nS0
√ ΛS

exp

⎡

⎢
⎣ −

1
2

p

⎛

⎜
⎝Λmax

S − η− 1
3

S

⎞

⎟
⎠

⎤

⎥
⎦+

η
1
3
LβL

3 ̅̅̅̅̅nL
√ ΛL

⎞

⎟
⎠λ0 +

[

log
(

1 −
1
J

)

+
1
J
+

χSηS + χLηL

J2

]
J
λ0

= 0. (B1) 

From Eq. (B1), the initial swelling ratio of the DN gel can be obtained. For instance, in the main text, the DN gel investigated has nS0 

= 50 and nL = 2000, and the corresponding initial swelling ratio of the DN gel can be calculated by solving Eq. (B1), which gives J0 =

18.05, as shown in Fig. 3(b) of the main text. 
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Appendix C. Threshold for delayed necking of stretched DN gels 

The threshold for delayed instability is strongly affected by the material properties of the DN gel, for example, nL, which char-
acterizes the chain length of long-chain networks. We find that for nL > 1697, the threshold for delayed necking instability is 
determined by the peak of the long-term equilibrium s-J curve; for nL < 1697, the threshold for delayed necking instability is given by 
the transition swelling ratio. Details of the analysis are provided below.  

(i) For nL > 1697, we take nL = 2000, the numerical case discussed in the main text, as an example. Note that values of other model 
parameters adopted in this section are kept the same as those used in the main text. In this case, the peak value of the long-term 
equilibrium s-J curve is sνkT = 6.6 × 10− 3 [Fig. C1(a)]. If the applied stress sνkT is slightly lower than the peak value of the s-J curve, 
the gel swells, ending up with a swelling ratio close to J = 35.87. Note that the peak value of the instantaneous s-λ curve 
corresponding to J = 35.87 is higher than the applied stress level [Fig. C1(b)], thus necking cannot occur. In contrast, consider 
another circumstance where the applied stress is equal to 6.6 × 10− 3, the DN gel can swell from the initial swelling ratio J =
18.05 to 94.67 [Fig. C1(a)]. At the moment when the swelling ratio reaches J = 43.65, the peak value of the instantaneous s-λ 
curve drops to the applied stress of sνkT = 6.6 × 10− 3 [Fig. C1(b)], thereby triggering the necking instability after a delay in time. 
As discussed above, delayed necking occurs at an applied stress equal to 6.6 × 10− 3 but is prohibited for applied stresses less 
than 6.6 × 10− 3. That is, in this case, the threshold for delayed necking instability is 6.6 × 10− 3, the peak value of the long- 
term equilibrium s-J curve.  

(ii) For nL ≤ 1697, we take nL = 1000 as an example. Distinct from the case with nL = 2000 shown in Fig. C1(a), the equilibrium s-J 
curve for nL = 1000 is monotonic and has no peak [Fig. C2(a)], such that the threshold for delayed instability cannot be directly 
determined by the equilibrium s-J curve. In Fig. C2 (b), we find that the instantaneous stress-stretch curve has a local peak when 
swelling ratio J ≤ 23.93, while the curve becomes monotonic when J surpasses23.93, indicating that the DN gel with J > 23.93 
is not susceptible to necking instability. We define the swelling ratio J = 23.93, which marks the disappearance of the local peak 
of the instantaneous s-λ curve, as the transition swelling ratio. Herein, the peak value of the instantaneous s-λ curve corresponding 
to the transition swelling ratio J = 23.93 is 11 × 10− 3 [Fig. C2(a)]. When a stress slightly lower than 11 × 10− 3 is applied to 
the DN gel, the equilibrium s-J curve demonstrates that the gel can swell from J = 16.3 to 60.8. The gel does not develop 
necking, because the applied stress is lower than peak values of instantaneous s-λ curves with J < 23.93 and the gel becomes 
immune from necking instability when J surpasses 23.93. However, when a stress equal to 11 × 10− 3 is exerted, the peak value 
of the instantaneous curve drops to the applied stress level when J reaches 23.93, thereby leading to delayed necking instability. 
That is, the threshold for delayed necking instability for nL = 1000 is 11 × 10− 3 – the peak value of instantaneous s-λ curve 
corresponding to the transition swelling ratio. 
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